A Mixed Conjugate Gradient Method for Unconstrained Optimization Problem

B. Qiao, Liping Yang, Jie Liu, Yanru Yao
{"title":"A Mixed Conjugate Gradient Method for Unconstrained Optimization Problem","authors":"B. Qiao, Liping Yang, Jie Liu, Yanru Yao","doi":"10.1109/CIS.2017.00121","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a mixed conjugate gradient method for unconstrained optimization problem based on the HS method and DY method. The new method has taken advantages of two methods. The global convergence of the mixed conjugate gradient method is proved under the Wolfe line search which is no need for the descent condition. The numerical experimental results on some classical problems show that the new method is efficient.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a mixed conjugate gradient method for unconstrained optimization problem based on the HS method and DY method. The new method has taken advantages of two methods. The global convergence of the mixed conjugate gradient method is proved under the Wolfe line search which is no need for the descent condition. The numerical experimental results on some classical problems show that the new method is efficient.
无约束优化问题的混合共轭梯度法
本文在HS法和DY法的基础上,提出了一种求解无约束优化问题的混合共轭梯度法。这种新方法利用了两种方法的优点。证明了混合共轭梯度法在不需要下降条件的Wolfe线搜索下的全局收敛性。对一些经典问题的数值实验结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信