Validation of a Lattice Boltzmann Model for Transient Cryogenic Two-Phase Flow

T. Traudt, S. Schlechtriem
{"title":"Validation of a Lattice Boltzmann Model for Transient Cryogenic Two-Phase Flow","authors":"T. Traudt, S. Schlechtriem","doi":"10.2322/TASTJ.17.321","DOIUrl":null,"url":null,"abstract":"A thermal lattice-Boltzmann model of a van der Waals gas was used to check its applicability to specific challenges in the numerical simulation of transient cryogenic two-phase flow in rocket engine feed systems. Three test cases were chosen to prove the model is capable of capturing the underlying physics. Overall correct representation of incompressible flow should be demonstrated by a lid-driven cavity. The capability of the model to handle shocks and supersonic flow is shown in a shock tube configuration. The last test case was chosen in order to show instantaneous evaporation by the formation of a single vapour bubble at a heated surface.","PeriodicalId":120185,"journal":{"name":"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/TASTJ.17.321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A thermal lattice-Boltzmann model of a van der Waals gas was used to check its applicability to specific challenges in the numerical simulation of transient cryogenic two-phase flow in rocket engine feed systems. Three test cases were chosen to prove the model is capable of capturing the underlying physics. Overall correct representation of incompressible flow should be demonstrated by a lid-driven cavity. The capability of the model to handle shocks and supersonic flow is shown in a shock tube configuration. The last test case was chosen in order to show instantaneous evaporation by the formation of a single vapour bubble at a heated surface.
瞬态低温两相流晶格玻尔兹曼模型的验证
在火箭发动机进气系统瞬态低温两相流数值模拟中,采用范德华气体的热晶格-玻尔兹曼模型,验证了该模型对特定问题的适用性。选择了三个测试用例来证明该模型能够捕获底层物理。不可压缩流动的整体正确表现应该由盖子驱动的腔体来证明。模型处理激波和超音速流动的能力在激波管配置中得到了体现。选择最后一个测试案例是为了显示在加热表面形成单个蒸汽泡的瞬时蒸发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信