A Recipe for Paradox

Rashed Ahmad
{"title":"A Recipe for Paradox","authors":"Rashed Ahmad","doi":"10.26686/ajl.v19i5.7887","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a recipe that not only captures the common structure of semantic paradoxes but also captures our intuitions regarding the relations between these paradoxes. Before we unveil our recipe, we first talk about a well-known schema introduced by Graham Priest, namely, the Inclosure Schema. Without rehashing previous arguments against the Inclosure Schema, we contribute different arguments for the same concern that the Inclosure Schema bundles together the wrong paradoxes. That is, we will provide further arguments on why the Inclosure Schema is both too narrow and too broad. \nWe then spell out our recipe. The recipe shows that all of the following paradoxes share the same structure: The Liar, Curry's paradox, Validity Curry, Provability Liar, Provability Curry, Knower's paradox, Knower's Curry, Grelling-Nelson's paradox, Russell's paradox in terms of extensions, alternative Liar and alternative Curry, and hitherto unexplored paradoxes. \nWe conclude the paper by stating the lessons that we can learn from the recipe, and what kind of solutions the recipe suggests if we want to adhere to the Principle of Uniform Solution.","PeriodicalId":367849,"journal":{"name":"The Australasian Journal of Logic","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Australasian Journal of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26686/ajl.v19i5.7887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we provide a recipe that not only captures the common structure of semantic paradoxes but also captures our intuitions regarding the relations between these paradoxes. Before we unveil our recipe, we first talk about a well-known schema introduced by Graham Priest, namely, the Inclosure Schema. Without rehashing previous arguments against the Inclosure Schema, we contribute different arguments for the same concern that the Inclosure Schema bundles together the wrong paradoxes. That is, we will provide further arguments on why the Inclosure Schema is both too narrow and too broad. We then spell out our recipe. The recipe shows that all of the following paradoxes share the same structure: The Liar, Curry's paradox, Validity Curry, Provability Liar, Provability Curry, Knower's paradox, Knower's Curry, Grelling-Nelson's paradox, Russell's paradox in terms of extensions, alternative Liar and alternative Curry, and hitherto unexplored paradoxes. We conclude the paper by stating the lessons that we can learn from the recipe, and what kind of solutions the recipe suggests if we want to adhere to the Principle of Uniform Solution.
悖论的秘诀
在本文中,我们提供了一个配方,不仅捕获了语义悖论的共同结构,而且捕获了我们关于这些悖论之间关系的直觉。在我们揭开我们的配方之前,我们首先谈谈Graham Priest介绍的一个著名的模式,即包含模式。在不重复先前反对内含模式的论据的情况下,我们为内含模式将错误的悖论捆绑在一起的同一个问题提供了不同的论据。也就是说,我们将进一步论证为什么包含模式既太窄又太宽。然后我们拼出我们的食谱。该配方表明,以下所有悖论都具有相同的结构:说谎者、库里悖论、有效性库里悖论、可证明性骗子、可证明性库里悖论、知者悖论、知者库里悖论、格雷林-尼尔森悖论、罗素悖论的延伸、可选择的骗子和可选择的库里悖论,以及迄今为止尚未探索的悖论。最后,我们陈述了我们可以从这个配方中学到的教训,以及如果我们想要坚持统一解原则,这个配方建议了什么样的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信