Pre-processing of Partition Data for Enhancement of LOLIMOT

Michael E Killian, S. Grosswindhager, M. Kozek, Barbara Mayer
{"title":"Pre-processing of Partition Data for Enhancement of LOLIMOT","authors":"Michael E Killian, S. Grosswindhager, M. Kozek, Barbara Mayer","doi":"10.1109/EUROSIM.2013.56","DOIUrl":null,"url":null,"abstract":"The Local Linear Model Tree (LOLIMOT) algorithm is a versatile tool for black-box identification of nonlinear complex systems with a set of local linear models. In this work two methods for pre-processing of the partition data for this algorithm are presented. These methods aim at reducing the number of LLMs while improving the global model fit. The proposed methods are a (linear or nonlinear) principal component analysis and a rotational transformation of the input space. Both methods aim at mitigating the limitations of the axis-orthogonal splits in the partition space that LOLIMOT performs. The application to real data from industrial processes and the efectiveness is demonstrated on a grate-fired biomass plant and the thermal model of a large office building.","PeriodicalId":386945,"journal":{"name":"2013 8th EUROSIM Congress on Modelling and Simulation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th EUROSIM Congress on Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIM.2013.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Local Linear Model Tree (LOLIMOT) algorithm is a versatile tool for black-box identification of nonlinear complex systems with a set of local linear models. In this work two methods for pre-processing of the partition data for this algorithm are presented. These methods aim at reducing the number of LLMs while improving the global model fit. The proposed methods are a (linear or nonlinear) principal component analysis and a rotational transformation of the input space. Both methods aim at mitigating the limitations of the axis-orthogonal splits in the partition space that LOLIMOT performs. The application to real data from industrial processes and the efectiveness is demonstrated on a grate-fired biomass plant and the thermal model of a large office building.
分区数据预处理增强LOLIMOT
局部线性模型树(LOLIMOT)算法是一种用于具有一组局部线性模型的非线性复杂系统黑盒识别的通用工具。本文给出了该算法分区数据的两种预处理方法。这些方法旨在减少llm的数量,同时改善全局模型拟合。所提出的方法是(线性或非线性)主成分分析和输入空间的旋转变换。这两种方法都旨在减轻LOLIMOT在分区空间中执行的轴正交分割的限制。在一个栅格燃烧的生物质发电厂和一个大型办公大楼的热模型上验证了该方法在工业过程中实际数据中的应用及其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信