Revisiting the separation principle for improved transition control

Huaijin Yao, Maziar S. Hemati
{"title":"Revisiting the separation principle for improved transition control","authors":"Huaijin Yao, Maziar S. Hemati","doi":"10.2514/6.2018-3693","DOIUrl":null,"url":null,"abstract":"Feedback control can be used to suppress transient energy growth and delay turbulent transition in shear flows. The separation principle of modern control theory is commonly invoked to design observer-based control laws, whereby a full-state feedback controller and a state estimator are designed independently, then combined to achieve an output feedback flow control law. In previous work, we established that transient energy growth can never be fully eliminated by observer-based control, even when an associated full-state feedback law can fully suppress such growth. In this paper, we use a linearized channel flow to show that observer-based feedback will lead to higher levels of transient energy growth than if no control is used at all. Further, we show that transient energy growth can actually be reduced via optimal static output feedback controllers, thus overcoming the performance limitations of observer-based designs. We introduce a modified AndersonMoore algorithm for efficiently computing optimal static output feedback controllers, then show that the resulting controllers reduce the worst-case transient energy growth relative to the uncontrolled system and to observer-based designs. Further, our results indicate that optimal static output feedback exhibits robustness to Reynolds number variations and modeling uncertainty. The result of this study highlight the advantages of optimal static output feedback control over observer-based designs and create opportunities for realizing improved transition control strategies in the future.","PeriodicalId":144668,"journal":{"name":"2018 Flow Control Conference","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Flow Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-3693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Feedback control can be used to suppress transient energy growth and delay turbulent transition in shear flows. The separation principle of modern control theory is commonly invoked to design observer-based control laws, whereby a full-state feedback controller and a state estimator are designed independently, then combined to achieve an output feedback flow control law. In previous work, we established that transient energy growth can never be fully eliminated by observer-based control, even when an associated full-state feedback law can fully suppress such growth. In this paper, we use a linearized channel flow to show that observer-based feedback will lead to higher levels of transient energy growth than if no control is used at all. Further, we show that transient energy growth can actually be reduced via optimal static output feedback controllers, thus overcoming the performance limitations of observer-based designs. We introduce a modified AndersonMoore algorithm for efficiently computing optimal static output feedback controllers, then show that the resulting controllers reduce the worst-case transient energy growth relative to the uncontrolled system and to observer-based designs. Further, our results indicate that optimal static output feedback exhibits robustness to Reynolds number variations and modeling uncertainty. The result of this study highlight the advantages of optimal static output feedback control over observer-based designs and create opportunities for realizing improved transition control strategies in the future.
为改进过渡控制重温分离原理
反馈控制可用于抑制瞬态能量增长和延迟剪切流中的湍流转变。基于观测器的控制律设计通常采用现代控制理论中的分离原理,分别设计全状态反馈控制器和状态估计器,然后将其组合在一起实现输出反馈流控制律。在之前的工作中,我们确定了瞬态能量增长永远不能被基于观测器的控制完全消除,即使相关的全状态反馈律可以完全抑制这种增长。在本文中,我们使用线性化的通道流来显示基于观测器的反馈将导致更高水平的瞬态能量增长,而不是完全不使用控制。此外,我们表明瞬态能量增长实际上可以通过最优静态输出反馈控制器来减少,从而克服了基于观测器设计的性能限制。我们引入了一种改进的安德森摩尔算法来有效地计算最优静态输出反馈控制器,然后表明所得到的控制器相对于非受控系统和基于观测器的设计减少了最坏情况下的瞬态能量增长。此外,我们的研究结果表明,最优静态输出反馈对雷诺数变化和建模不确定性具有鲁棒性。本研究的结果突出了最优静态输出反馈控制相对于基于观测器的设计的优势,并为将来实现改进的过渡控制策略创造了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信