Leveraging an image folksonomy and the Signature Quadratic Form Distance for semantic-based detection of near-duplicate video clips

Hyun-seok Min, J. Choi, W. D. Neve, Yong Man Ro
{"title":"Leveraging an image folksonomy and the Signature Quadratic Form Distance for semantic-based detection of near-duplicate video clips","authors":"Hyun-seok Min, J. Choi, W. D. Neve, Yong Man Ro","doi":"10.1109/ICME.2011.6011937","DOIUrl":null,"url":null,"abstract":"Being able to detect near-duplicate video clips (NDVCs) is a prerequisite for a plethora of multimedia applications. Given the observation that content transformations tend to preserve semantic information, techniques for NDVC detection may benefit from the use of a semantic approach. This paper discusses how an image folksonomy (i.e., community-contributed images and metadata) and the Signature Quadratic Form Distance (SQFD) can be leveraged for the purpose of identifying NDVCs. Experimental results obtained for the MIRFLICKR-25000 image set and the TRECVID 2009 video set indicate that an image folksonomy and SQFD can be successfully used for detecting NDVCs. In addition, our findings show that model-free NDVC detection (i.e., NDVC detection using an image folksonomy) has a higher semantic coverage than model-based NDVC detection (i.e., NDVC detection using the VIREO-374 semantic concept models).","PeriodicalId":433997,"journal":{"name":"2011 IEEE International Conference on Multimedia and Expo","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2011.6011937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Being able to detect near-duplicate video clips (NDVCs) is a prerequisite for a plethora of multimedia applications. Given the observation that content transformations tend to preserve semantic information, techniques for NDVC detection may benefit from the use of a semantic approach. This paper discusses how an image folksonomy (i.e., community-contributed images and metadata) and the Signature Quadratic Form Distance (SQFD) can be leveraged for the purpose of identifying NDVCs. Experimental results obtained for the MIRFLICKR-25000 image set and the TRECVID 2009 video set indicate that an image folksonomy and SQFD can be successfully used for detecting NDVCs. In addition, our findings show that model-free NDVC detection (i.e., NDVC detection using an image folksonomy) has a higher semantic coverage than model-based NDVC detection (i.e., NDVC detection using the VIREO-374 semantic concept models).
利用图像大众分类法和签名二次形式距离进行基于语义的近重复视频剪辑检测
能够检测近重复视频剪辑(NDVCs)是大量多媒体应用程序的先决条件。考虑到内容转换倾向于保留语义信息,NDVC检测技术可能会受益于使用语义方法。本文讨论了如何利用图像大众分类法(即社区贡献的图像和元数据)和签名二次形式距离(SQFD)来识别NDVCs。MIRFLICKR-25000图像集和TRECVID 2009视频集的实验结果表明,图像大众分类和SQFD可以成功地用于NDVCs检测。此外,我们的研究结果表明,无模型的NDVC检测(即使用图像大众分类法的NDVC检测)比基于模型的NDVC检测(即使用VIREO-374语义概念模型的NDVC检测)具有更高的语义覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信