Rock Classification with Machine Learning: a Case Study from the Zinkgruvan Zn-Pb-Ag Deposit, Bergslagen, Sweden

Filip Simán, N. Jansson, T. Kampmann, F. Liwicki
{"title":"Rock Classification with Machine Learning: a Case Study from the Zinkgruvan Zn-Pb-Ag Deposit, Bergslagen, Sweden","authors":"Filip Simán, N. Jansson, T. Kampmann, F. Liwicki","doi":"10.1109/SAIS53221.2021.9483959","DOIUrl":null,"url":null,"abstract":"In this paper we assess two traditional machine learning (ML) methods which can be used for automatic rock type classification: (1) the Self-Organising Map (SOM) with k-means clustering, and (2) Classification and Regression Trees (CART). The dataset used for this paper were chemical compositional data of rocks acquired through X-Ray Fluorescence (XRF) analysis. The ground truth of the dataset was generated by human experts in the field of geology. The complexity of the chosen dataset influenced the evaluation performance of the two ML models. We achieve an overall accuracy of 68.02 % and 62.79 % respectively when using SOM with k-means and CART.","PeriodicalId":334078,"journal":{"name":"2021 Swedish Artificial Intelligence Society Workshop (SAIS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Swedish Artificial Intelligence Society Workshop (SAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAIS53221.2021.9483959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we assess two traditional machine learning (ML) methods which can be used for automatic rock type classification: (1) the Self-Organising Map (SOM) with k-means clustering, and (2) Classification and Regression Trees (CART). The dataset used for this paper were chemical compositional data of rocks acquired through X-Ray Fluorescence (XRF) analysis. The ground truth of the dataset was generated by human experts in the field of geology. The complexity of the chosen dataset influenced the evaluation performance of the two ML models. We achieve an overall accuracy of 68.02 % and 62.79 % respectively when using SOM with k-means and CART.
基于机器学习的岩石分类:以瑞典Bergslagen Zinkgruvan锌铅银矿床为例
在本文中,我们评估了两种可用于自动岩石类型分类的传统机器学习(ML)方法:(1)具有k-means聚类的自组织图(SOM)和(2)分类和回归树(CART)。本文使用的数据集是通过x射线荧光(XRF)分析获得的岩石化学成分数据。数据集的ground truth是由地质领域的人类专家生成的。所选数据集的复杂性影响了两种机器学习模型的评估性能。当我们使用SOM与k-means和CART时,我们的总体准确率分别为68.02%和62.79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信