A novel mobile robot localization approach based on a model switching feature extraction

Sen Zhang, Jun Gong, Kim Kheng Lee
{"title":"A novel mobile robot localization approach based on a model switching feature extraction","authors":"Sen Zhang, Jun Gong, Kim Kheng Lee","doi":"10.1109/ICIEA.2012.6360919","DOIUrl":null,"url":null,"abstract":"This paper studies natural feature based localization for mobile robot navigation in semi-structured outdoor environments using a laser range sensor. We propose an algorithm for feature extraction by using switching models between line model and circle model. In order to avoid the estimation error caused by the linearization in the extended Kalman filtering (EKF), a particle filter is applied to realize the prediction and validation process by integrating data from both the laser range sensor and encoders in outdoor environments. The proposed feature extraction and localization algorithms are verified in a artificial simulation environment. The results show that the proposed algorithms perform very well in an semi-structured outdoor environment.","PeriodicalId":220747,"journal":{"name":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2012.6360919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper studies natural feature based localization for mobile robot navigation in semi-structured outdoor environments using a laser range sensor. We propose an algorithm for feature extraction by using switching models between line model and circle model. In order to avoid the estimation error caused by the linearization in the extended Kalman filtering (EKF), a particle filter is applied to realize the prediction and validation process by integrating data from both the laser range sensor and encoders in outdoor environments. The proposed feature extraction and localization algorithms are verified in a artificial simulation environment. The results show that the proposed algorithms perform very well in an semi-structured outdoor environment.
一种基于模型切换特征提取的移动机器人定位方法
本文研究了基于自然特征的半结构化室外环境下移动机器人导航激光距离传感器定位方法。提出了一种利用线模型和圆模型之间的切换模型进行特征提取的算法。为了避免扩展卡尔曼滤波(EKF)中线性化带来的估计误差,采用粒子滤波,将室外环境下激光距离传感器和编码器的数据进行融合,实现预测和验证过程。在人工仿真环境中对所提出的特征提取和定位算法进行了验证。结果表明,该算法在半结构化的室外环境中具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信