Raffi Khatchadourian, Johan Dovland, N. Soundarajan
{"title":"Enforcing behavioral constraints in evolving aspect-oriented programs","authors":"Raffi Khatchadourian, Johan Dovland, N. Soundarajan","doi":"10.1145/1394496.1394499","DOIUrl":null,"url":null,"abstract":"Reasoning, specification, and verification of Aspect-Oriented (AO) programs presents unique challenges especially as such programs evolve over time. Components, base-code and aspects alike, may be easily added, removed, interchanged, or presently unavailable at unpredictable frequencies. Consequently, modular reasoning of such programs is highly attractive as it enables tractable evolution, otherwise necessitating that the entire program be reexamined each time a component is changed. It is well known, however, that modular reasoning about AO programs is difficult. In this paper, we present our ongoing work in constructing a relyguarantee style reasoning system for the Aspect-Oriented Programming (AOP) paradigm, adopting a trace-based approach to deal with the plug-n-play nature inherent to these programs, thus easing AOP evolution.","PeriodicalId":245301,"journal":{"name":"Workshop on Foundations of Aspect-Oriented Languages","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Foundations of Aspect-Oriented Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1394496.1394499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Reasoning, specification, and verification of Aspect-Oriented (AO) programs presents unique challenges especially as such programs evolve over time. Components, base-code and aspects alike, may be easily added, removed, interchanged, or presently unavailable at unpredictable frequencies. Consequently, modular reasoning of such programs is highly attractive as it enables tractable evolution, otherwise necessitating that the entire program be reexamined each time a component is changed. It is well known, however, that modular reasoning about AO programs is difficult. In this paper, we present our ongoing work in constructing a relyguarantee style reasoning system for the Aspect-Oriented Programming (AOP) paradigm, adopting a trace-based approach to deal with the plug-n-play nature inherent to these programs, thus easing AOP evolution.