Decision Tree based Classification of Profiled Mobile Device Resource Status Information for Data Offloading in Private Network

Sridhar S K, Amutharaj J
{"title":"Decision Tree based Classification of Profiled Mobile Device Resource Status Information for Data Offloading in Private Network","authors":"Sridhar S K, Amutharaj J","doi":"10.1109/CENTCON52345.2021.9688177","DOIUrl":null,"url":null,"abstract":"This paper validates the effectiveness of decision tree classification models by performing the data analysis of the large data set collected in the real time implementation of an intelligent composite offload decision (ICODA) framework with on-premise mobile device cloud. We have collected around 40000 data records of real time device resource status information with 7 inputs and 1 output attribute each at different time conditions. These 40000 data records are then cleaned and normalized to scale down in practical range to about 4608 training samples. The machine learning classification technique is applied on different train-test-split ratio using ID3, CART and random forest classifiers (RFC) with proper randomized and grid search cross validations. The resulting mean accuracy percentage is observed at 92.91 with ID3, 99.22 with CART and 99.44 with RFC evaluating all the possible combinations in the data set. The experimental results show that the random forest classifier outperforms the other methods in data offload framework.","PeriodicalId":103865,"journal":{"name":"2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON)","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENTCON52345.2021.9688177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper validates the effectiveness of decision tree classification models by performing the data analysis of the large data set collected in the real time implementation of an intelligent composite offload decision (ICODA) framework with on-premise mobile device cloud. We have collected around 40000 data records of real time device resource status information with 7 inputs and 1 output attribute each at different time conditions. These 40000 data records are then cleaned and normalized to scale down in practical range to about 4608 training samples. The machine learning classification technique is applied on different train-test-split ratio using ID3, CART and random forest classifiers (RFC) with proper randomized and grid search cross validations. The resulting mean accuracy percentage is observed at 92.91 with ID3, 99.22 with CART and 99.44 with RFC evaluating all the possible combinations in the data set. The experimental results show that the random forest classifier outperforms the other methods in data offload framework.
基于决策树的专网数据卸载移动设备资源状态信息分类
本文通过对基于本地移动设备云的智能复合卸载决策(ICODA)框架实时实施过程中收集的大数据集进行数据分析,验证了决策树分类模型的有效性。我们收集了大约40000条不同时间条件下设备资源实时状态信息的数据记录,每个记录有7个输入和1个输出属性。然后对这40000条数据记录进行清理和规范化,以便在实际范围内缩小到大约4608个训练样本。利用ID3、CART和随机森林分类器(RFC)对不同的训练-测试-分割比进行机器学习分类技术,并进行适当的随机化和网格搜索交叉验证。在评估数据集中所有可能的组合时,ID3的平均准确率为92.91,CART为99.22,RFC为99.44。实验结果表明,随机森林分类器在数据卸载框架下的性能优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信