A new algorithm for the estimation of hidden Markov model parameters

L. Bahl, P. Brown, P. D. Souza, R. Mercer
{"title":"A new algorithm for the estimation of hidden Markov model parameters","authors":"L. Bahl, P. Brown, P. D. Souza, R. Mercer","doi":"10.1109/ICASSP.1988.196627","DOIUrl":null,"url":null,"abstract":"Discusses the problem of estimating the parameter values of hidden Markov word models for speech recognition. The authors argue that maximum-likelihood estimation of the parameters does not lead to values which maximize recognition accuracy and describe an alternative estimation procedure called corrective training which is aimed at minimizing the number of recognition errors. Corrective training is similar to a well-known error-correcting training procedure for linear classifiers and works by iteratively adjusting the parameter values so as to make correct words more probable and incorrect words less probable. There are also strong parallels between corrective training and maximum mutual information estimation. They do not prove that the corrective training algorithm converges, but experimental evidence suggests that it does, and that it leads to significantly fewer recognition errors than maximum likelihood estimation.<<ETX>>","PeriodicalId":448544,"journal":{"name":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1988.196627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

Abstract

Discusses the problem of estimating the parameter values of hidden Markov word models for speech recognition. The authors argue that maximum-likelihood estimation of the parameters does not lead to values which maximize recognition accuracy and describe an alternative estimation procedure called corrective training which is aimed at minimizing the number of recognition errors. Corrective training is similar to a well-known error-correcting training procedure for linear classifiers and works by iteratively adjusting the parameter values so as to make correct words more probable and incorrect words less probable. There are also strong parallels between corrective training and maximum mutual information estimation. They do not prove that the corrective training algorithm converges, but experimental evidence suggests that it does, and that it leads to significantly fewer recognition errors than maximum likelihood estimation.<>
一种新的隐马尔可夫模型参数估计算法
讨论了语音识别中隐马尔可夫词模型参数值的估计问题。作者认为,参数的最大似然估计不会导致最大识别精度的值,并描述了一种称为纠正训练的替代估计程序,旨在最大限度地减少识别错误的数量。纠错训练类似于众所周知的线性分类器纠错训练过程,通过迭代调整参数值,使正确词的概率增大,错误词的概率减小。矫正训练和最大互信息估计之间也有很强的相似之处。他们没有证明纠正训练算法收敛,但实验证据表明它收敛,并且与最大似然估计相比,它导致的识别错误显着减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信