LearnSDN: Optimizing Routing Over Multimedia-based 5G-SDN using Machine Learning

A. Al-Jawad, I. Comsa, P. Shah, R. Trestian
{"title":"LearnSDN: Optimizing Routing Over Multimedia-based 5G-SDN using Machine Learning","authors":"A. Al-Jawad, I. Comsa, P. Shah, R. Trestian","doi":"10.1109/comm54429.2022.9817277","DOIUrl":null,"url":null,"abstract":"With the advent of 5G networks and beyond, there is an increasing demand to leverage Machine Learning (ML) capabilities and develop new and innovative solutions that could achieve efficient use of network resources and improve users' Quality of Experience (QoE). One of the key enabling technologies for 5G networks is Software Defined Networking (SDN) as it enables fine-grained monitoring and control of the network. Given the variety of dynamic networking conditions within 5G-SDN environments and the diversity of routing algorithms, an intelligent control of these strategies should exist to maximize the Quality of Service (QoS) provisioning of multimedia traffic with more stringent requirements without penalizing the performance of the background traffic. This paper proposes LearnSDN, an innovative ML-based solution that enables QoS provisioning over multimedia-based 5G-SDN environments. LearnSDN uses ML to learn the most convenient routing algorithm to be employed on the background traffic based on the dynamic network conditions in order to cater for the QoS requirements of the multimedia traffic. The performance of the proposed LearnSDN solution is evaluated under a realistic emulation-based SDN environment. The results indicate that LearnSDN outperforms other state-of-the-art solutions in terms of QoS provisioning, PSNR and MOS.","PeriodicalId":118077,"journal":{"name":"2022 14th International Conference on Communications (COMM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comm54429.2022.9817277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent of 5G networks and beyond, there is an increasing demand to leverage Machine Learning (ML) capabilities and develop new and innovative solutions that could achieve efficient use of network resources and improve users' Quality of Experience (QoE). One of the key enabling technologies for 5G networks is Software Defined Networking (SDN) as it enables fine-grained monitoring and control of the network. Given the variety of dynamic networking conditions within 5G-SDN environments and the diversity of routing algorithms, an intelligent control of these strategies should exist to maximize the Quality of Service (QoS) provisioning of multimedia traffic with more stringent requirements without penalizing the performance of the background traffic. This paper proposes LearnSDN, an innovative ML-based solution that enables QoS provisioning over multimedia-based 5G-SDN environments. LearnSDN uses ML to learn the most convenient routing algorithm to be employed on the background traffic based on the dynamic network conditions in order to cater for the QoS requirements of the multimedia traffic. The performance of the proposed LearnSDN solution is evaluated under a realistic emulation-based SDN environment. The results indicate that LearnSDN outperforms other state-of-the-art solutions in terms of QoS provisioning, PSNR and MOS.
LearnSDN:利用机器学习优化基于多媒体的5G-SDN路由
随着5G及以后网络的出现,利用机器学习(ML)功能并开发新的创新解决方案的需求越来越大,这些解决方案可以有效利用网络资源并提高用户的体验质量(QoE)。5G网络的关键使能技术之一是软件定义网络(SDN),因为它可以实现对网络的细粒度监控和控制。考虑到5G-SDN环境中动态网络条件的多样性和路由算法的多样性,应该存在对这些策略的智能控制,以便在不损害后台流量性能的情况下,以更严格的要求最大限度地提供多媒体流量的服务质量(QoS)。本文提出了LearnSDN,这是一种基于ml的创新解决方案,可在基于多媒体的5G-SDN环境中提供QoS。LearnSDN利用ML根据动态网络情况学习最方便的路由算法用于后台流量,以满足多媒体流量的QoS要求。提出的LearnSDN解决方案的性能在一个真实的基于仿真的SDN环境下进行了评估。结果表明,LearnSDN在QoS配置、PSNR和MOS方面优于其他最先进的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信