On a time-frequency approach to translation on finite graphs

M. Begué
{"title":"On a time-frequency approach to translation on finite graphs","authors":"M. Begué","doi":"10.1109/SAMPTA.2015.7148839","DOIUrl":null,"url":null,"abstract":"The authors of [1] have used spectral graph theory to define a Fourier transform on finite graphs. With this definition, one can use elementary properties of classical time-frequency analysis to define time-frequency operations on graphs including convolution, modulation, and translation. Many of these graph operators have properties that match our intuition in Euclidean space. The exception lies with the translation operator. In particular, translation does not form a group, i.e., TiTj ≠ Ti+j. We prove that graphs whose translation operators exhibit semigroup behavior are those whose eigenvectors of the Laplacian form a Hadamard matrix.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"324 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The authors of [1] have used spectral graph theory to define a Fourier transform on finite graphs. With this definition, one can use elementary properties of classical time-frequency analysis to define time-frequency operations on graphs including convolution, modulation, and translation. Many of these graph operators have properties that match our intuition in Euclidean space. The exception lies with the translation operator. In particular, translation does not form a group, i.e., TiTj ≠ Ti+j. We prove that graphs whose translation operators exhibit semigroup behavior are those whose eigenvectors of the Laplacian form a Hadamard matrix.
有限图上的时频平移方法
[1]的作者使用谱图理论来定义有限图上的傅里叶变换。有了这个定义,人们可以使用经典时频分析的基本性质来定义图上的时频操作,包括卷积、调制和平移。这些图算子中的许多都具有与我们在欧几里德空间中的直觉相匹配的性质。翻译操作符是个例外。特别是平移不形成群,即TiTj≠Ti+j。证明平移算子具有半群行为的图是拉普拉斯特征向量构成Hadamard矩阵的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信