Large-Scale Real-Time Product Recommendation at Criteo

Romain Lerallut, Diane Gasselin, Nicolas Le Roux
{"title":"Large-Scale Real-Time Product Recommendation at Criteo","authors":"Romain Lerallut, Diane Gasselin, Nicolas Le Roux","doi":"10.1145/2792838.2799498","DOIUrl":null,"url":null,"abstract":"Performance retargeting consists of displaying online advertisements that are personalized according to each user's browsing history. We show close to three billion personalized ads a day, each of them optimized to generate the best post-click sales performance for our clients. Within this time frame, Criteo's recommender system must choose a dozen relevant products from billions of candidates in a few milliseconds. Our main challenge is to balance the amount of data we use with the processing speed and low-latency requirements of a web-scale environment.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2799498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Performance retargeting consists of displaying online advertisements that are personalized according to each user's browsing history. We show close to three billion personalized ads a day, each of them optimized to generate the best post-click sales performance for our clients. Within this time frame, Criteo's recommender system must choose a dozen relevant products from billions of candidates in a few milliseconds. Our main challenge is to balance the amount of data we use with the processing speed and low-latency requirements of a web-scale environment.
Criteo的大规模实时产品推荐
性能重定向包括根据每个用户的浏览历史显示个性化的在线广告。我们每天展示近30亿个个性化广告,每个广告都经过优化,为我们的客户产生最佳的点击后销售业绩。在这段时间内,Criteo的推荐系统必须在几毫秒内从数十亿个候选产品中选出12个相关产品。我们的主要挑战是平衡我们使用的数据量与网络规模环境的处理速度和低延迟要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信