K. Choi, Gyuweon Jung, Seongbin Hong, Y. Jeong, Wonjun Shin, Jinwoo Park, Chang-Yong Lee, Donghee Kim, Jong-Ho Lee
{"title":"Response Analysis of Resistor-type Gas Sensor with Bias Voltage Condition","authors":"K. Choi, Gyuweon Jung, Seongbin Hong, Y. Jeong, Wonjun Shin, Jinwoo Park, Chang-Yong Lee, Donghee Kim, Jong-Ho Lee","doi":"10.1109/ISOEN54820.2022.9789620","DOIUrl":null,"url":null,"abstract":"Many studies on the response analysis of resistor-type gas sensors have been reported. In this work, the bias dependent sensitivity of resistor-type gas sensors is investigated. The response to NO2 gas is 40% lower at high bias voltages than at low bias voltages. We analyze the effect of sensing material resistance and metal-semiconductor (sensing material) contact resistance on gas response. The measured results from the pattern to which the transmission line method was applied show that the bias-dependent response is observed only in the contact resistance component. This result is analyzed using the bias dependence of the Schottky barrier that occurs in the metal-semiconductor contact. The performance of the sensor can be improved by utilizing the bias dependent sensitivity characteristics.","PeriodicalId":427373,"journal":{"name":"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOEN54820.2022.9789620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Many studies on the response analysis of resistor-type gas sensors have been reported. In this work, the bias dependent sensitivity of resistor-type gas sensors is investigated. The response to NO2 gas is 40% lower at high bias voltages than at low bias voltages. We analyze the effect of sensing material resistance and metal-semiconductor (sensing material) contact resistance on gas response. The measured results from the pattern to which the transmission line method was applied show that the bias-dependent response is observed only in the contact resistance component. This result is analyzed using the bias dependence of the Schottky barrier that occurs in the metal-semiconductor contact. The performance of the sensor can be improved by utilizing the bias dependent sensitivity characteristics.