Adaptive volterra filtering using M-band wavelet transform

Byeong-Woo Kim, Yong-Min Lee, Sung-Kwon Park, S. Nam
{"title":"Adaptive volterra filtering using M-band wavelet transform","authors":"Byeong-Woo Kim, Yong-Min Lee, Sung-Kwon Park, S. Nam","doi":"10.1109/ISSPA.1999.815831","DOIUrl":null,"url":null,"abstract":"A new LMS adaptive Volterra filtering in the M-band wavelet transform domain is presented, where the input is pre-processed with MDWT (M-band discrete wavelet transform) being followed by power normalization. In particular, the pre-processing procedure leads to effective reduction of the eigenvalue spread of a Volterra input auto-correlation matrix, and thus improves the convergence rate of the adaptation process even in case of wide classes of input processes. To demonstrate the performance of the proposed approach, some simulation results are provided.","PeriodicalId":302569,"journal":{"name":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1999.815831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A new LMS adaptive Volterra filtering in the M-band wavelet transform domain is presented, where the input is pre-processed with MDWT (M-band discrete wavelet transform) being followed by power normalization. In particular, the pre-processing procedure leads to effective reduction of the eigenvalue spread of a Volterra input auto-correlation matrix, and thus improves the convergence rate of the adaptation process even in case of wide classes of input processes. To demonstrate the performance of the proposed approach, some simulation results are provided.
基于m波段小波变换的自适应伏特滤波
提出了一种新的m波段离散小波变换域LMS自适应Volterra滤波方法,该方法对输入进行MDWT预处理,然后进行功率归一化处理。特别是,预处理过程有效地减小了Volterra输入自相关矩阵的特征值扩展,从而提高了自适应过程的收敛速度,即使在输入过程的类别很广的情况下也是如此。为了验证该方法的性能,给出了一些仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信