Compression, segmentation, and modeling of filamentary volumetric data

B. McCormick, B. Busse, Purna Doddapaneni, Z. Melek, J. Keyser
{"title":"Compression, segmentation, and modeling of filamentary volumetric data","authors":"B. McCormick, B. Busse, Purna Doddapaneni, Z. Melek, J. Keyser","doi":"10.2312/SM.20041411","DOIUrl":null,"url":null,"abstract":"We present a data structure for the representation of filamentary volumetric data, called the L-block. While the L-block can be used to represent arbitrary volume data sets, it is particularly geared towards representing long, thin, branching structures that prior volumetric representations have difficulty dealing with efficiently. The data structure is designed to allow for easy compression, storage, segmentation, and reconstruction of volumetric data such as scanned neuronal data. By \"polymerizing\" adjacent connected voxels into connected components, L-block construction facilitates real-time data compression and segmentation, as well as subsequent geometric modeling and visualization of embedded objects within the volume data set. We describe its application in the context of reconstruction of brain microstructure at a neuronal level of detail.","PeriodicalId":405863,"journal":{"name":"ACM Symposium on Solid Modeling and Applications","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Solid Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/SM.20041411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We present a data structure for the representation of filamentary volumetric data, called the L-block. While the L-block can be used to represent arbitrary volume data sets, it is particularly geared towards representing long, thin, branching structures that prior volumetric representations have difficulty dealing with efficiently. The data structure is designed to allow for easy compression, storage, segmentation, and reconstruction of volumetric data such as scanned neuronal data. By "polymerizing" adjacent connected voxels into connected components, L-block construction facilitates real-time data compression and segmentation, as well as subsequent geometric modeling and visualization of embedded objects within the volume data set. We describe its application in the context of reconstruction of brain microstructure at a neuronal level of detail.
细丝体积数据的压缩、分割和建模
我们提出了一种用于表示细丝体积数据的数据结构,称为l块。虽然l块可用于表示任意体积数据集,但它特别适用于表示长、薄、分支结构,而先前的体积表示难以有效地处理这些结构。数据结构的设计是为了方便压缩、存储、分割和重建体积数据,如扫描的神经元数据。通过将相邻的连接体素“聚合”成连接的组件,l块构建有助于实时数据压缩和分割,以及随后在体数据集中对嵌入对象进行几何建模和可视化。我们描述了它在大脑微观结构重建的背景下的应用,在神经元水平的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信