Lagrange constrained neural network-based approach to hyperspectral remote sensing image classification

Q. Du, H. Szu, J. Buss
{"title":"Lagrange constrained neural network-based approach to hyperspectral remote sensing image classification","authors":"Q. Du, H. Szu, J. Buss","doi":"10.1109/ICNNSP.2003.1279263","DOIUrl":null,"url":null,"abstract":"Lagrange constrained neural network (LCNN) was an unsupervised technique that can simultaneously estimate the endmembers and their abundance fractions in a remotely sensed image without any prior information. The network outputs corresponded to the estimated abundance fraction images (AFI), which displayed the distribution of the endmember materials in an image scene. Two constraints were universally imposed to the network outputs, one was the sum-to-one constraint and the other was the non-negativity constraint. One more data-specific constraint was to minimize the Lagrange linear estimation error vector E = /spl lambda/(As - x). Together they described the thermodynamics equilibrium of the Earth open system in the incoming and outgoing radiation fields. Thus, we adopted the thermodynamic Helmholtz free energy and seek the maximum value of a contrast function for the most likelihood solution. When such an LCNN was applied to hyperspectral remotely sensed images, the number of AFIs was equal to the number of bands because of its unbiased and unsupervised structure. So the resulting AFIs might be highly correlated and visually similar. A two-stage post-processing approach could be followed to facilitate the data assessment.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1279263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Lagrange constrained neural network (LCNN) was an unsupervised technique that can simultaneously estimate the endmembers and their abundance fractions in a remotely sensed image without any prior information. The network outputs corresponded to the estimated abundance fraction images (AFI), which displayed the distribution of the endmember materials in an image scene. Two constraints were universally imposed to the network outputs, one was the sum-to-one constraint and the other was the non-negativity constraint. One more data-specific constraint was to minimize the Lagrange linear estimation error vector E = /spl lambda/(As - x). Together they described the thermodynamics equilibrium of the Earth open system in the incoming and outgoing radiation fields. Thus, we adopted the thermodynamic Helmholtz free energy and seek the maximum value of a contrast function for the most likelihood solution. When such an LCNN was applied to hyperspectral remotely sensed images, the number of AFIs was equal to the number of bands because of its unbiased and unsupervised structure. So the resulting AFIs might be highly correlated and visually similar. A two-stage post-processing approach could be followed to facilitate the data assessment.
基于拉格朗日约束神经网络的高光谱遥感图像分类方法
拉格朗日约束神经网络(Lagrange constrained neural network, LCNN)是一种无需任何先验信息就能同时估计遥感图像中端元及其丰度分数的无监督技术。网络输出对应于估计的丰度分数图像(AFI),它显示了端元材料在图像场景中的分布。对网络输出普遍施加两种约束,一种是和一约束,另一种是非负性约束。另一个特定于数据的约束是最小化拉格朗日线性估计误差向量E = /spl lambda/(As - x)。他们一起描述了地球开放系统在入射和出射辐射场中的热力学平衡。因此,我们采用热力学亥姆霍兹自由能,寻求对比函数的最大值作为最似然解。将这种LCNN应用于高光谱遥感图像时,由于其无偏无监督的结构,afi的个数等于波段的个数。因此,最终的afi可能是高度相关的,并且在视觉上相似。可采用两阶段后处理方法,以促进数据评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信