Detection of False Alarms in the NICU Using Pressure Sensitive Mat

Daniel G. Kyrollos, K. Greenwood, J. Harrold, J. Green
{"title":"Detection of False Alarms in the NICU Using Pressure Sensitive Mat","authors":"Daniel G. Kyrollos, K. Greenwood, J. Harrold, J. Green","doi":"10.1109/SAS51076.2021.9530191","DOIUrl":null,"url":null,"abstract":"In the neonatal intensive care unit (NICU), a large proportion of alarms are false. This can result in alarm fatigue which increases the risk that alarms of clinical significance are overlooked and may lead to an increased response time. It is therefore of interest to minimize false alarms in the NICU to reduce alarm fatigue. Previous alarm classification systems rely on physiologic data and waveforms. In this study, we explore the use of a pressure sensitive mat (PSM), which is an unobtrusive and non-contact secondary sensor system that captures motion-related data. We use a dataset of 136 manually annotated alarm events for 10 neonatal subjects to train a machine learning model for the detection of false alarms. Results show that a combination of physiologic and PSM features has the best performance, which achieves a 0.87 macro-averaged F1 score, compared to the model that solely relies on physiologic data which only achieves a 0.73 macro-averaged F1 score. We also show that the use of PSM data improves the model's ability to generalize to unseen patients using a leave-one-subject-out test protocol. This study demonstrates that the PSM provides complementary and useful information for Improving the discrimination of true and false alarms.","PeriodicalId":224327,"journal":{"name":"2021 IEEE Sensors Applications Symposium (SAS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS51076.2021.9530191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the neonatal intensive care unit (NICU), a large proportion of alarms are false. This can result in alarm fatigue which increases the risk that alarms of clinical significance are overlooked and may lead to an increased response time. It is therefore of interest to minimize false alarms in the NICU to reduce alarm fatigue. Previous alarm classification systems rely on physiologic data and waveforms. In this study, we explore the use of a pressure sensitive mat (PSM), which is an unobtrusive and non-contact secondary sensor system that captures motion-related data. We use a dataset of 136 manually annotated alarm events for 10 neonatal subjects to train a machine learning model for the detection of false alarms. Results show that a combination of physiologic and PSM features has the best performance, which achieves a 0.87 macro-averaged F1 score, compared to the model that solely relies on physiologic data which only achieves a 0.73 macro-averaged F1 score. We also show that the use of PSM data improves the model's ability to generalize to unseen patients using a leave-one-subject-out test protocol. This study demonstrates that the PSM provides complementary and useful information for Improving the discrimination of true and false alarms.
利用压敏垫检测新生儿重症监护病房虚警
在新生儿重症监护病房(NICU),有很大比例的报警是假的。这可能导致警报疲劳,从而增加了忽视具有临床意义的警报的风险,并可能导致反应时间延长。因此,减少新生儿重症监护室的误报以减少报警疲劳是有意义的。以前的报警分类系统依赖于生理数据和波形。在本研究中,我们探索了压敏垫(PSM)的使用,这是一种不引人注目的非接触式二次传感器系统,可捕获运动相关数据。我们使用10个新生儿受试者的136个手动标注报警事件的数据集来训练机器学习模型以检测假警报。结果表明,生理特征与PSM特征相结合的模型表现最佳,其宏观平均F1得分为0.87,而单纯依赖生理数据的模型宏观平均F1得分仅为0.73。我们还表明,使用PSM数据提高了模型的能力,以推广到看不见的病人使用留一个主体测试协议。该研究表明,PSM为提高真假警报的区分提供了补充和有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信