PLELog: Semi-Supervised Log-Based Anomaly Detection via Probabilistic Label Estimation

Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong, Wenbin Zhang
{"title":"PLELog: Semi-Supervised Log-Based Anomaly Detection via Probabilistic Label Estimation","authors":"Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong, Wenbin Zhang","doi":"10.1109/ICSE-Companion52605.2021.00106","DOIUrl":null,"url":null,"abstract":"PLELog is a novel approach for log-based anomaly detection via probabilistic label estimation. It is designed to effectively detect anomalies in unlabeled logs and meanwhile avoid the manual labeling effort for training data generation. We use semantic information within log events as fixed-length vectors and apply HDBSCAN to automatically clustering log sequences. After that, we also propose a Probabilistic Label Estimation approach to reduce the noises introduced by error labeling and put \"labeled\" instances into an attention-based GRU network for training. We conducted an empirical study to evaluate the effectiveness of PLELog on two open-source log data (i.e., HDFS and BGL). The results demonstrate the effectiveness of PLELog. In particular, PLELog has been applied to two real-world systems from a university and a large corporation, further demonstrating its practicability.","PeriodicalId":136929,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-Companion52605.2021.00106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

PLELog is a novel approach for log-based anomaly detection via probabilistic label estimation. It is designed to effectively detect anomalies in unlabeled logs and meanwhile avoid the manual labeling effort for training data generation. We use semantic information within log events as fixed-length vectors and apply HDBSCAN to automatically clustering log sequences. After that, we also propose a Probabilistic Label Estimation approach to reduce the noises introduced by error labeling and put "labeled" instances into an attention-based GRU network for training. We conducted an empirical study to evaluate the effectiveness of PLELog on two open-source log data (i.e., HDFS and BGL). The results demonstrate the effectiveness of PLELog. In particular, PLELog has been applied to two real-world systems from a university and a large corporation, further demonstrating its practicability.
基于概率标签估计的半监督日志异常检测
PLELog是一种基于概率标签估计的基于日志的异常检测新方法。它的目的是有效地检测未标记日志中的异常,同时避免人工标记训练数据生成的工作。我们使用日志事件中的语义信息作为固定长度的向量,并应用HDBSCAN对日志序列进行自动聚类。之后,我们还提出了一种概率标签估计方法来减少错误标记带来的噪声,并将“标记”的实例放入基于注意力的GRU网络中进行训练。我们进行了一项实证研究,以评估PLELog在两个开源日志数据(即HDFS和BGL)上的有效性。结果证明了PLELog的有效性。特别地,PLELog已经应用到一个大学和一个大公司的两个现实系统中,进一步证明了它的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信