Vietnamese Fake News Detection Based on Hybrid Transfer Learning Model and TF-IDF

Ngoc-Dong Pham, Thi-Hanh Le, Thanh-Dat Do, Thanh-Toan Vuong, Thi-Hong Vuong, Quang-Thuy Ha
{"title":"Vietnamese Fake News Detection Based on Hybrid Transfer Learning Model and TF-IDF","authors":"Ngoc-Dong Pham, Thi-Hanh Le, Thanh-Dat Do, Thanh-Toan Vuong, Thi-Hong Vuong, Quang-Thuy Ha","doi":"10.1109/KSE53942.2021.9648676","DOIUrl":null,"url":null,"abstract":"There are a lot of studies about fake news detection on English social networks. However, Vietnamese fake news detection on social networks still limit. In this paper, we propose a new approach for Vietnamese Fake News Detection on Social Network Sites using a pre-train language model PhoBERT combine with Term Frequency - Inverse Document Frequency (TF-IDF) for word embedding and Convolutional Neural Network (CNN) for features extracting. Our proposed model is trained and evaluated on the dataset of Reliable Intelligence Identification on Vietnamese SNSs (ReINTEL) shared task. We process text data into two scenarios: raw data and processed data to elucidate the hypothesis of pre-processing data on social networks. In addition, we use the different extra features to improve the efficiency of model. We compare our proposed model with the baseline methods. The proposed model achieved outstanding results with 0.9538 AUC score on raw data.","PeriodicalId":130986,"journal":{"name":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE53942.2021.9648676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

There are a lot of studies about fake news detection on English social networks. However, Vietnamese fake news detection on social networks still limit. In this paper, we propose a new approach for Vietnamese Fake News Detection on Social Network Sites using a pre-train language model PhoBERT combine with Term Frequency - Inverse Document Frequency (TF-IDF) for word embedding and Convolutional Neural Network (CNN) for features extracting. Our proposed model is trained and evaluated on the dataset of Reliable Intelligence Identification on Vietnamese SNSs (ReINTEL) shared task. We process text data into two scenarios: raw data and processed data to elucidate the hypothesis of pre-processing data on social networks. In addition, we use the different extra features to improve the efficiency of model. We compare our proposed model with the baseline methods. The proposed model achieved outstanding results with 0.9538 AUC score on raw data.
基于混合迁移学习模型和TF-IDF的越南假新闻检测
关于英语社交网络上的假新闻检测有很多研究。然而,越南社交网络上的假新闻检测仍然有限。在本文中,我们提出了一种在社交网站上检测越南假新闻的新方法,使用预训练语言模型PhoBERT结合词嵌入的术语频率-反文档频率(TF-IDF)和特征提取的卷积神经网络(CNN)。我们提出的模型在越南社交网站可靠情报识别(ReINTEL)共享任务数据集上进行了训练和评估。我们将文本数据处理为原始数据和处理后的数据两种场景,以阐明社交网络数据预处理的假设。此外,我们利用不同的额外特征来提高模型的效率。我们将我们提出的模型与基线方法进行比较。该模型在原始数据上的AUC得分为0.9538,取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信