Matching point features using mutual information

A. Rangarajan, J. S. Duncan
{"title":"Matching point features using mutual information","authors":"A. Rangarajan, J. S. Duncan","doi":"10.1109/BIA.1998.692445","DOIUrl":null,"url":null,"abstract":"The authors have developed a new mutual information-based registration method for matching unlabeled point features. In contrast to earlier mutual information-based registration methods which estimate the mutual information using image intensity information, the authors' approach uses the point feature location information. A novel aspect of their approach is the spontaneous emergence of correspondence (between the two sets of features) as a natural by-product of information maximization. The authors have applied this algorithm to the problem of geometric alignment of primate autoradiographs. They also present a detailed theoretical comparison between their approach and other approaches that explicitly parameterize feature correspondence.","PeriodicalId":261632,"journal":{"name":"Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIA.1998.692445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The authors have developed a new mutual information-based registration method for matching unlabeled point features. In contrast to earlier mutual information-based registration methods which estimate the mutual information using image intensity information, the authors' approach uses the point feature location information. A novel aspect of their approach is the spontaneous emergence of correspondence (between the two sets of features) as a natural by-product of information maximization. The authors have applied this algorithm to the problem of geometric alignment of primate autoradiographs. They also present a detailed theoretical comparison between their approach and other approaches that explicitly parameterize feature correspondence.
利用互信息匹配点特征
提出了一种新的基于互信息的点特征匹配方法。与先前基于互信息的配准方法使用图像强度信息估计互信息不同,本文的方法使用点特征位置信息。他们的方法的一个新颖方面是作为信息最大化的自然副产品而自发出现的对应(两组特征之间)。作者将该算法应用于灵长类动物自放射线照相的几何对齐问题。他们还对他们的方法和其他显式参数化特征对应的方法进行了详细的理论比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信