A preliminary study of three training methods for land cover classification by artificial neural networks

Libin Zhou, Xiaojun Yang
{"title":"A preliminary study of three training methods for land cover classification by artificial neural networks","authors":"Libin Zhou, Xiaojun Yang","doi":"10.1109/URS.2009.5137498","DOIUrl":null,"url":null,"abstract":"This paper reports our preliminary study that aims to examine the effectiveness of training methods for land cover classification by artificial neural networks. We consider three training methods, namely, the gradient descent method, the conjugate gradient method, and the Quasi-Newton method. We apply these methods to derive land cover information from a Landsat Enhanced Thematic Mapper Plus (ETM+) scene covering a urban area. Our initial experiment results suggest training methods can affect the overall efficiency of neural networks in terms of land cover classification accuracy.","PeriodicalId":154334,"journal":{"name":"2009 Joint Urban Remote Sensing Event","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Joint Urban Remote Sensing Event","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URS.2009.5137498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper reports our preliminary study that aims to examine the effectiveness of training methods for land cover classification by artificial neural networks. We consider three training methods, namely, the gradient descent method, the conjugate gradient method, and the Quasi-Newton method. We apply these methods to derive land cover information from a Landsat Enhanced Thematic Mapper Plus (ETM+) scene covering a urban area. Our initial experiment results suggest training methods can affect the overall efficiency of neural networks in terms of land cover classification accuracy.
三种基于人工神经网络的土地覆盖分类训练方法的初步研究
本文报告了我们的初步研究,旨在检验人工神经网络训练方法在土地覆盖分类中的有效性。我们考虑了三种训练方法,即梯度下降法、共轭梯度法和拟牛顿法。我们应用这些方法从覆盖城市地区的Landsat Enhanced Thematic Mapper Plus (ETM+)场景中获得土地覆盖信息。我们的初步实验结果表明,训练方法可以影响神经网络在土地覆盖分类精度方面的整体效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信