Sensor planning for object pose estimation and identification

Jeremy Ma, J. Burdick
{"title":"Sensor planning for object pose estimation and identification","authors":"Jeremy Ma, J. Burdick","doi":"10.1109/ROSE.2009.5355995","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach to sensor planning for simultaneous object identification and 3D pose estimation. We consider the problem of determining the next-best-view for a movable sensor (or an autonomous agent) to identify an unknown object from among a database of known object models. We use an information theoretic approach to define a metric (based on the difference between the current and expected model entropy) that guides the selection of the optimal control action. We present a generalized algorithm that can be used in sensor planning for object identification and pose estimation. Experimental results are also presented to validate the proposed algorithm.","PeriodicalId":107220,"journal":{"name":"2009 IEEE International Workshop on Robotic and Sensors Environments","volume":"323 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Workshop on Robotic and Sensors Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2009.5355995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a novel approach to sensor planning for simultaneous object identification and 3D pose estimation. We consider the problem of determining the next-best-view for a movable sensor (or an autonomous agent) to identify an unknown object from among a database of known object models. We use an information theoretic approach to define a metric (based on the difference between the current and expected model entropy) that guides the selection of the optimal control action. We present a generalized algorithm that can be used in sensor planning for object identification and pose estimation. Experimental results are also presented to validate the proposed algorithm.
用于目标姿态估计和识别的传感器规划
本文提出了一种同时进行目标识别和三维姿态估计的传感器规划方法。我们考虑确定移动传感器(或自主代理)从已知对象模型数据库中识别未知对象的次优视图问题。我们使用信息理论方法来定义一个度量(基于当前和预期模型熵之间的差异),该度量指导选择最优控制动作。我们提出了一种可用于目标识别和姿态估计的传感器规划的广义算法。实验结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信