Petko Bogdanov, Nicholas D. Larusso, Ambuj K. Singh
{"title":"Towards Community Discovery in Signed Collaborative Interaction Networks","authors":"Petko Bogdanov, Nicholas D. Larusso, Ambuj K. Singh","doi":"10.1109/ICDMW.2010.174","DOIUrl":null,"url":null,"abstract":"—We propose a framework for discovery of collaborative community structure in Wiki-based knowledge repositories based on raw-content generation analysis. We leverage topic modelling in order to capture agreement and opposition of contributors and analyze these multi-modal relations to map communities in the contributor base. The key steps of our approach include (i) modeling of pair wise variable-strength contributor interactions that can be both positive and negative, (ii) synthesis of a global network incorporating all pair wise interactions, and (iii) detection and analysis of community structure encoded in such networks. The global community discovery algorithm we propose outperforms existing alternatives in identifying coherent clusters according to objective optimality criteria. Analysis of the discovered community structure reveals coalitions of common interest editors who back each other in promoting some topics and collectively oppose other coalitions or single authors. We couple contributor interactions with content evolution and reveal the global picture of opposing themes within the self-regulated community base for both controversial and featured articles in Wikipedia.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
—We propose a framework for discovery of collaborative community structure in Wiki-based knowledge repositories based on raw-content generation analysis. We leverage topic modelling in order to capture agreement and opposition of contributors and analyze these multi-modal relations to map communities in the contributor base. The key steps of our approach include (i) modeling of pair wise variable-strength contributor interactions that can be both positive and negative, (ii) synthesis of a global network incorporating all pair wise interactions, and (iii) detection and analysis of community structure encoded in such networks. The global community discovery algorithm we propose outperforms existing alternatives in identifying coherent clusters according to objective optimality criteria. Analysis of the discovered community structure reveals coalitions of common interest editors who back each other in promoting some topics and collectively oppose other coalitions or single authors. We couple contributor interactions with content evolution and reveal the global picture of opposing themes within the self-regulated community base for both controversial and featured articles in Wikipedia.