{"title":"Patch-Based Model for the Classification of Soybean Leaf Diseases","authors":"Gustavo Vigilato G. S., P. G. Cavalcanti","doi":"10.5753/wvc.2021.18899","DOIUrl":null,"url":null,"abstract":"The disease detection is vital to increase the productivity and quality of soybean cultivation and this detection is usually carried out in a laboratory, which is time consuming and costly. To overcome these issues, there is a growing demand for technologies that aim at a faster detection and classification of diseases. In this context, this work proposes the extraction of several patches from a leaf image and combining a convolutional neural network with a support vector machine, we present a complete model for the classification of soybean leaf diseases. In this approach, an image dataset with evidence of diseases commonly observed in soybean crops was analyzed and our experiments achieved precisions greater than 90%.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The disease detection is vital to increase the productivity and quality of soybean cultivation and this detection is usually carried out in a laboratory, which is time consuming and costly. To overcome these issues, there is a growing demand for technologies that aim at a faster detection and classification of diseases. In this context, this work proposes the extraction of several patches from a leaf image and combining a convolutional neural network with a support vector machine, we present a complete model for the classification of soybean leaf diseases. In this approach, an image dataset with evidence of diseases commonly observed in soybean crops was analyzed and our experiments achieved precisions greater than 90%.