A two-phase fuzzy mining approach

Chun-Wei Lin, T. Hong, Wen-Hsiang Lu
{"title":"A two-phase fuzzy mining approach","authors":"Chun-Wei Lin, T. Hong, Wen-Hsiang Lu","doi":"10.1109/FUZZY.2010.5584373","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a two-phase fuzzy mining approach based on a tree structure to discover fuzzy frequent itemsets from a quantitative database. A simple tree structure called the upper-bound fuzzy frequent-pattern tree (abbreviated as UBFFP tree) is designed to help achieve the purpose. The two-phase fuzzy mining approach can easily derive the upper-bound fuzzy supports of itemsets through the tree and prune unpromising itemsets in the first phase, and then finds the actual frequent fuzzy itemsets in the second phase. Experimental results also show the good performance of the proposed approach.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"323 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a two-phase fuzzy mining approach based on a tree structure to discover fuzzy frequent itemsets from a quantitative database. A simple tree structure called the upper-bound fuzzy frequent-pattern tree (abbreviated as UBFFP tree) is designed to help achieve the purpose. The two-phase fuzzy mining approach can easily derive the upper-bound fuzzy supports of itemsets through the tree and prune unpromising itemsets in the first phase, and then finds the actual frequent fuzzy itemsets in the second phase. Experimental results also show the good performance of the proposed approach.
两阶段模糊挖掘方法
本文提出了一种基于树形结构的两阶段模糊挖掘方法,用于从定量数据库中发现模糊频繁项集。设计了一种简单的树结构,称为上界模糊频率模式树(简称UBFFP树)来帮助实现这一目的。两阶段模糊挖掘方法可以很容易地通过树得到项目集的上界模糊支持度,并在第一阶段修剪不希望的项目集,然后在第二阶段找到实际频繁的模糊项目集。实验结果也表明了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信