Image classification using neural networks and ontologies

C. Breen, L. Khan, A. Ponnusamy
{"title":"Image classification using neural networks and ontologies","authors":"C. Breen, L. Khan, A. Ponnusamy","doi":"10.1109/DEXA.2002.1045883","DOIUrl":null,"url":null,"abstract":"The advent of extremely powerful home PC and the growth of the Internet have made the appearance of multimedia documents a common sight in the computer world. In the world of unstructured data composed of images and other media types, classification often comes at the price of countless hours of manual labor. This research aims to present a scalable system capable of examining images and accurately classifying the image based on its visual content. When retrieving images based on a user's query, the system yields a minimal amount of irrelevant information (high precision) and ensures a maximum amount of relevant information (high recall).","PeriodicalId":254550,"journal":{"name":"Proceedings. 13th International Workshop on Database and Expert Systems Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 13th International Workshop on Database and Expert Systems Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2002.1045883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

The advent of extremely powerful home PC and the growth of the Internet have made the appearance of multimedia documents a common sight in the computer world. In the world of unstructured data composed of images and other media types, classification often comes at the price of countless hours of manual labor. This research aims to present a scalable system capable of examining images and accurately classifying the image based on its visual content. When retrieving images based on a user's query, the system yields a minimal amount of irrelevant information (high precision) and ensures a maximum amount of relevant information (high recall).
使用神经网络和本体的图像分类
功能极其强大的家用个人电脑的出现和因特网的发展使得多媒体文档的出现在计算机世界中成为一种常见的现象。在由图像和其他媒体类型组成的非结构化数据的世界中,分类通常需要付出无数小时的体力劳动。本研究旨在提出一个可扩展的系统,能够检查图像并根据其视觉内容对图像进行准确分类。当根据用户的查询检索图像时,系统产生最少的不相关信息(高精度),并确保最多的相关信息(高召回率)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信