Robustness Optimization of Nanophotonic Devices Using Deep Learning

R. Jenkins, S. Campbell, P. Werner, D. Werner
{"title":"Robustness Optimization of Nanophotonic Devices Using Deep Learning","authors":"R. Jenkins, S. Campbell, P. Werner, D. Werner","doi":"10.1109/AP-S/USNC-URSI47032.2022.9887138","DOIUrl":null,"url":null,"abstract":"Realizing state-of-the-art metasurfaces depends on meeting strict geometric tolerances due to their inherent sensitivity to structural variations. A design may have extremely good performance in simulation which is lost when undergoing fabrication. We present how a Deep Learning-augmented multiobjective optimization method can be used for designing metasurfaces which are robust to a common type of manufacturing defect, namely erosion and dilation.","PeriodicalId":371560,"journal":{"name":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Realizing state-of-the-art metasurfaces depends on meeting strict geometric tolerances due to their inherent sensitivity to structural variations. A design may have extremely good performance in simulation which is lost when undergoing fabrication. We present how a Deep Learning-augmented multiobjective optimization method can be used for designing metasurfaces which are robust to a common type of manufacturing defect, namely erosion and dilation.
基于深度学习的纳米光子器件鲁棒性优化
由于超表面对结构变化的固有敏感性,实现最先进的超表面取决于满足严格的几何公差。一个设计可能在模拟中具有非常好的性能,但在进行制造时却失去了性能。我们介绍了如何使用深度学习增强的多目标优化方法来设计对常见制造缺陷(即侵蚀和膨胀)具有鲁棒性的元表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信