Self-Supervised Deep-Learning Segmentation of Corneal Endothelium Specular Microscopy Images

S. Sánchez, Kevin Mendoza, Fernando J. Quintero, A. M. Prada, A. Tello, V. Galvis, L. Romero, A. Marrugo
{"title":"Self-Supervised Deep-Learning Segmentation of Corneal Endothelium Specular Microscopy Images","authors":"S. Sánchez, Kevin Mendoza, Fernando J. Quintero, A. M. Prada, A. Tello, V. Galvis, L. Romero, A. Marrugo","doi":"10.1109/ColCACI59285.2023.10226148","DOIUrl":null,"url":null,"abstract":"Computerized medical evaluation of the corneal endothelium is challenging because it requires costly equipment and specialized personnel, not to mention that conventional techniques require manual annotations that are difficult to acquire. This study aims to obtain reliable segmentations without requiring large data sets labeled by expert personnel. To address this problem, we use the Barlow Twins approach to pre-train the encoder of a UNet model in an unsupervised manner. Then, with few labeled data, we train the segmentation. Encouraging results show that it is possible to address the challenge of limited data availability using self-supervised learning. This model achieved a precision of 86%, obtaining a good performance. Using many images to learn good representations and a few labeled images to learn the semantic segmentation task is feasible.","PeriodicalId":206196,"journal":{"name":"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ColCACI59285.2023.10226148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computerized medical evaluation of the corneal endothelium is challenging because it requires costly equipment and specialized personnel, not to mention that conventional techniques require manual annotations that are difficult to acquire. This study aims to obtain reliable segmentations without requiring large data sets labeled by expert personnel. To address this problem, we use the Barlow Twins approach to pre-train the encoder of a UNet model in an unsupervised manner. Then, with few labeled data, we train the segmentation. Encouraging results show that it is possible to address the challenge of limited data availability using self-supervised learning. This model achieved a precision of 86%, obtaining a good performance. Using many images to learn good representations and a few labeled images to learn the semantic segmentation task is feasible.
角膜内皮镜面显微镜图像的自监督深度学习分割
角膜内皮的计算机医学评估具有挑战性,因为它需要昂贵的设备和专业人员,更不用说传统技术需要难以获得的手工注释。本研究旨在获得可靠的分割,而不需要由专家人员标记的大型数据集。为了解决这个问题,我们使用Barlow Twins方法以无监督的方式预训练UNet模型的编码器。然后,用很少的标记数据,我们训练分割。令人鼓舞的结果表明,使用自监督学习可以解决数据可用性有限的挑战。该模型达到了86%的精度,获得了良好的性能。使用大量图像学习良好的表示,使用少量标记图像学习语义分割任务是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信