Poisson noise reduction in scintigraphic images using Gradient Adaptive Trimmed Mean filter

Khan Bahadar Khan, Amir A. Khaliq, Muhammad Shahid, Hayyat Ullah
{"title":"Poisson noise reduction in scintigraphic images using Gradient Adaptive Trimmed Mean filter","authors":"Khan Bahadar Khan, Amir A. Khaliq, Muhammad Shahid, Hayyat Ullah","doi":"10.1109/INTELSE.2016.7475138","DOIUrl":null,"url":null,"abstract":"We propose a new hybrid technique for reduction of poisson noise in scintigraphic images. Our proposed method is a combination of Gradient calculation and Adaptive Trimmed Mean filter (ATMF). In a predefined window, gradient of the center pixel is averaged out. ATMF remove the lowest and highest variations in the pixel values of Gradient denoised image and average out remaining neighborhood pixel values. The proposed technique is applied on scintigraphic images. Results are compared with conventional filters i.e. Median, Wiener filter and latest denoising filter i.e. Non Local Mean (NLM) filter. The proposed scheme shows good visual results with improving Correlation, Mean Squared Error (MSE), Structural Similarity Index Metric (SSIM) and Peak to Signal Noise Ratio (PSNR) of the image.","PeriodicalId":127671,"journal":{"name":"2016 International Conference on Intelligent Systems Engineering (ICISE)","volume":"96 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Intelligent Systems Engineering (ICISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELSE.2016.7475138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We propose a new hybrid technique for reduction of poisson noise in scintigraphic images. Our proposed method is a combination of Gradient calculation and Adaptive Trimmed Mean filter (ATMF). In a predefined window, gradient of the center pixel is averaged out. ATMF remove the lowest and highest variations in the pixel values of Gradient denoised image and average out remaining neighborhood pixel values. The proposed technique is applied on scintigraphic images. Results are compared with conventional filters i.e. Median, Wiener filter and latest denoising filter i.e. Non Local Mean (NLM) filter. The proposed scheme shows good visual results with improving Correlation, Mean Squared Error (MSE), Structural Similarity Index Metric (SSIM) and Peak to Signal Noise Ratio (PSNR) of the image.
基于梯度自适应裁剪均值滤波的科学图像泊松降噪
我们提出了一种新的混合技术来降低科学图像中的泊松噪声。我们提出的方法是梯度计算和自适应平均滤波(ATMF)的结合。在预定义的窗口中,平均中心像素的梯度。ATMF去除梯度去噪图像中像素值的最小和最大变化,并对剩余的邻域像素值进行平均。将该方法应用于闪烁图像。结果与传统滤波器即中值滤波器、维纳滤波器和最新的去噪滤波器即非局部均值(NLM)滤波器进行了比较。该方案提高了图像的相关性、均方误差(MSE)、结构相似度指标(SSIM)和峰信噪比(PSNR),具有良好的视觉效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信