Clickbait Detection

Suhaib Khater, Oraib Al-Sahlee, Daoud M. Daoud, M. El-Seoud
{"title":"Clickbait Detection","authors":"Suhaib Khater, Oraib Al-Sahlee, Daoud M. Daoud, M. El-Seoud","doi":"10.1145/3220267.3220287","DOIUrl":null,"url":null,"abstract":"Clickbait is a term that describes deceiving web content that uses ambiguity to provoke the user into clicking a link. It aims to increase the number of online readers in order to generate more advertising revenue. Clickbaits are heavily present on social media platforms wasting the time of users. We used supervised machine learning to create a model trained on 24 features extracted from a dataset of social media posts to classify the posts into two classes. This method achieved an F1-score of %79 and area under ROC curve of 0.7. The method used highlights the importance of using features extracted from different elements of a social media posts along with the traditional features extracted from the title and the article. In this research, we prove that it is possible to identify clickbaits using all parts of the post while having minimum number of features possible.","PeriodicalId":177522,"journal":{"name":"International Conference on Software and Information Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Software and Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3220267.3220287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Clickbait is a term that describes deceiving web content that uses ambiguity to provoke the user into clicking a link. It aims to increase the number of online readers in order to generate more advertising revenue. Clickbaits are heavily present on social media platforms wasting the time of users. We used supervised machine learning to create a model trained on 24 features extracted from a dataset of social media posts to classify the posts into two classes. This method achieved an F1-score of %79 and area under ROC curve of 0.7. The method used highlights the importance of using features extracted from different elements of a social media posts along with the traditional features extracted from the title and the article. In this research, we prove that it is possible to identify clickbaits using all parts of the post while having minimum number of features possible.
Clickbait检测
标题党(Clickbait)是一个术语,用来描述欺骗性的网络内容,这些内容使用模糊性来刺激用户点击链接。它的目标是增加在线读者的数量,以产生更多的广告收入。点击诱饵在社交媒体平台上大量存在,浪费了用户的时间。我们使用监督式机器学习创建了一个模型,该模型训练了从社交媒体帖子数据集中提取的24个特征,并将帖子分为两类。该方法的f1评分为%79,ROC曲线下面积为0.7。所使用的方法强调了使用从社交媒体帖子的不同元素中提取的特征以及从标题和文章中提取的传统特征的重要性。在这项研究中,我们证明了在使用尽可能少的特征的情况下,使用帖子的所有部分来识别点击诱饵是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信