EDMD methods for analysis and prediction of bilinear compartmental models

J. Leventides, E. Melas, C. Poulios
{"title":"EDMD methods for analysis and prediction of bilinear compartmental models","authors":"J. Leventides, E. Melas, C. Poulios","doi":"10.1109/IAI55780.2022.9976837","DOIUrl":null,"url":null,"abstract":"In this paper, we consider bilinear compartmental models. Using the Koopman operator in connection with the Extended Dynamic Mode Decomposition (EDMD), we try to obtain a linear approximation of the original system in a vector space whose dimension is bigger than the original state space. This approach is based on the choice of a dictionary of observables. In the case of bilinear compartmental models there is a natural choice of observables. We present this choice and we examine the efficiency of the method. Especially, we focus on the SIR model which is used to describe the transmission of a disease through some population.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider bilinear compartmental models. Using the Koopman operator in connection with the Extended Dynamic Mode Decomposition (EDMD), we try to obtain a linear approximation of the original system in a vector space whose dimension is bigger than the original state space. This approach is based on the choice of a dictionary of observables. In the case of bilinear compartmental models there is a natural choice of observables. We present this choice and we examine the efficiency of the method. Especially, we focus on the SIR model which is used to describe the transmission of a disease through some population.
双线性室室模型的EDMD分析和预测方法
在本文中,我们考虑双线性分区模型。利用Koopman算子与扩展动态模态分解(EDMD)相结合,我们尝试在一个维数大于原始状态空间的向量空间中获得原始系统的线性逼近。这种方法基于可观察对象字典的选择。在双线性区室模型的情况下,有一个自然的可观测值选择。我们提出了这种选择,并检验了该方法的效率。我们特别关注SIR模型,该模型用于描述疾病在某些人群中的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信