RFastSLAM : A FastSLAM Algorithm based Rank Kalman Filter

Tai-shan Lou, Zhenjia Yue, Chen-hao Li, Hongmei Zhao
{"title":"RFastSLAM : A FastSLAM Algorithm based Rank Kalman Filter","authors":"Tai-shan Lou, Zhenjia Yue, Chen-hao Li, Hongmei Zhao","doi":"10.1109/CAC57257.2022.10055174","DOIUrl":null,"url":null,"abstract":"Solving Jacobi matrices of nonlinear functions and particle number degeneracy are two key challenges in fast simultaneous localization and mapping (FastSLAM). This paper proposes a new robust FastSLAM algorithm based on the rank Kalman filter called Rank FastSLAM(RFastSLAM). In the framework of Rao-Blackwellized particle filter (RBPF), the proposed distribution function is approximated by rank sampling points, and the estimation results are closer to the true values. The number of particles are smaller than that of FastSLAM by the rank statistics principle. From the simulation results, it can be seen from the simulation results that the RFastSLAM effectively slows down the particle degradation phenomenon and improves the estimation accuracy of the mobile robot.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10055174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solving Jacobi matrices of nonlinear functions and particle number degeneracy are two key challenges in fast simultaneous localization and mapping (FastSLAM). This paper proposes a new robust FastSLAM algorithm based on the rank Kalman filter called Rank FastSLAM(RFastSLAM). In the framework of Rao-Blackwellized particle filter (RBPF), the proposed distribution function is approximated by rank sampling points, and the estimation results are closer to the true values. The number of particles are smaller than that of FastSLAM by the rank statistics principle. From the simulation results, it can be seen from the simulation results that the RFastSLAM effectively slows down the particle degradation phenomenon and improves the estimation accuracy of the mobile robot.
RFastSLAM:基于秩卡尔曼滤波的FastSLAM算法
求解非线性函数Jacobi矩阵和粒子数退化是快速同时定位与映射(FastSLAM)中的两个关键问题。本文提出了一种新的基于秩卡尔曼滤波的鲁棒快速slam算法,称为秩快速slam (RFastSLAM)。在Rao-Blackwellized particle filter (RBPF)框架中,采用秩采样点逼近所提出的分布函数,估计结果更接近真实值。根据秩统计原理,粒子数比FastSLAM少。从仿真结果可以看出,RFastSLAM有效减缓了粒子退化现象,提高了移动机器人的估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信