QuantCloud: A Software with Automated Parallel Python for Quantitative Finance Applications

P. Zhang, Yu-Xiang Gao, Xiang Shi
{"title":"QuantCloud: A Software with Automated Parallel Python for Quantitative Finance Applications","authors":"P. Zhang, Yu-Xiang Gao, Xiang Shi","doi":"10.1109/QRS.2018.00052","DOIUrl":null,"url":null,"abstract":"Quantitative Finance is a field that replies on data analysis and big data enabling software to discover market signals. In this, a decisive factor is the speed that concerns execution speed and software development speed. So, an efficient software plays a key role in helping trading firms. Inspired by this, we present a novel software: QuantCloud to integrate a parallel Python system with a C++-coded Big Data system. C++ is used to implement this big data system and Python is used to code the user methods. The automated parallel execution of Python codes is built upon a coprocess-based parallel strategy. We test our software using two popular algorithms: moving-window and autoregressive moving-average (ARMA). We conduct an extensive comparative study between Intel Xeon E5 and Xeon Phi processors. The results show that our method achieved a nearly linear speedup for executing Python codes in parallel, prefect for today's multicore processors.","PeriodicalId":114973,"journal":{"name":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2018.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Quantitative Finance is a field that replies on data analysis and big data enabling software to discover market signals. In this, a decisive factor is the speed that concerns execution speed and software development speed. So, an efficient software plays a key role in helping trading firms. Inspired by this, we present a novel software: QuantCloud to integrate a parallel Python system with a C++-coded Big Data system. C++ is used to implement this big data system and Python is used to code the user methods. The automated parallel execution of Python codes is built upon a coprocess-based parallel strategy. We test our software using two popular algorithms: moving-window and autoregressive moving-average (ARMA). We conduct an extensive comparative study between Intel Xeon E5 and Xeon Phi processors. The results show that our method achieved a nearly linear speedup for executing Python codes in parallel, prefect for today's multicore processors.
QuantCloud:一个带有自动并行Python的定量金融应用软件
定量金融是一个依靠数据分析和大数据使软件发现市场信号的领域。其中,一个决定性的因素是速度,它关系到执行速度和软件开发速度。因此,一个高效的软件在帮助交易公司方面起着关键作用。受此启发,我们提出了一种新颖的软件:QuantCloud,将并行Python系统与c++编码的大数据系统集成在一起。使用c++实现这个大数据系统,使用Python编写用户方法。Python代码的自动并行执行是建立在基于协进程的并行策略之上的。我们使用两种流行的算法:移动窗口和自回归移动平均(ARMA)来测试我们的软件。我们对英特尔至强E5和至强Phi处理器进行了广泛的比较研究。结果表明,我们的方法在并行执行Python代码方面实现了近乎线性的加速,非常适合当今的多核处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信