{"title":"QuantCloud: A Software with Automated Parallel Python for Quantitative Finance Applications","authors":"P. Zhang, Yu-Xiang Gao, Xiang Shi","doi":"10.1109/QRS.2018.00052","DOIUrl":null,"url":null,"abstract":"Quantitative Finance is a field that replies on data analysis and big data enabling software to discover market signals. In this, a decisive factor is the speed that concerns execution speed and software development speed. So, an efficient software plays a key role in helping trading firms. Inspired by this, we present a novel software: QuantCloud to integrate a parallel Python system with a C++-coded Big Data system. C++ is used to implement this big data system and Python is used to code the user methods. The automated parallel execution of Python codes is built upon a coprocess-based parallel strategy. We test our software using two popular algorithms: moving-window and autoregressive moving-average (ARMA). We conduct an extensive comparative study between Intel Xeon E5 and Xeon Phi processors. The results show that our method achieved a nearly linear speedup for executing Python codes in parallel, prefect for today's multicore processors.","PeriodicalId":114973,"journal":{"name":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2018.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Quantitative Finance is a field that replies on data analysis and big data enabling software to discover market signals. In this, a decisive factor is the speed that concerns execution speed and software development speed. So, an efficient software plays a key role in helping trading firms. Inspired by this, we present a novel software: QuantCloud to integrate a parallel Python system with a C++-coded Big Data system. C++ is used to implement this big data system and Python is used to code the user methods. The automated parallel execution of Python codes is built upon a coprocess-based parallel strategy. We test our software using two popular algorithms: moving-window and autoregressive moving-average (ARMA). We conduct an extensive comparative study between Intel Xeon E5 and Xeon Phi processors. The results show that our method achieved a nearly linear speedup for executing Python codes in parallel, prefect for today's multicore processors.