Chatter prediction in boring process using machine learning technique

S. Saravanamurugan, S. Thiyagu, N. R. Sakthivel, B. Nair
{"title":"Chatter prediction in boring process using machine learning technique","authors":"S. Saravanamurugan, S. Thiyagu, N. R. Sakthivel, B. Nair","doi":"10.1504/IJMR.2017.10007082","DOIUrl":null,"url":null,"abstract":"Chatter is the main reason behind the failure of any part in the machining centre and lowers the productivity. Chatter occurs as a dynamic interaction between the tool and the work piece resulting in poor surface finish, high-pitch noise and premature tool failure. In this paper, the chatter prediction is done by active method by considering the parameters like spindle speed, depth of cut, feed rate and including the dynamics of both the tool and the workpiece. The vibration signals are acquired using an accelerometer in a closed environment. From the acquired signals discrete wavelet transformation (DWT), features are extracted and classified into three different patterns (stable, transition and chatter) using support vector machine (SVM). The classified results are validated using surface roughness values (Ra). [Received 12 August 2016; Accepted 19 May 2017]","PeriodicalId":154059,"journal":{"name":"Int. J. Manuf. Res.","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Manuf. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMR.2017.10007082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Chatter is the main reason behind the failure of any part in the machining centre and lowers the productivity. Chatter occurs as a dynamic interaction between the tool and the work piece resulting in poor surface finish, high-pitch noise and premature tool failure. In this paper, the chatter prediction is done by active method by considering the parameters like spindle speed, depth of cut, feed rate and including the dynamics of both the tool and the workpiece. The vibration signals are acquired using an accelerometer in a closed environment. From the acquired signals discrete wavelet transformation (DWT), features are extracted and classified into three different patterns (stable, transition and chatter) using support vector machine (SVM). The classified results are validated using surface roughness values (Ra). [Received 12 August 2016; Accepted 19 May 2017]
利用机器学习技术预测镗孔过程中的颤振
颤振是加工中心任何零件失效的主要原因,降低了生产效率。颤振是刀具和工件之间的动态相互作用,导致表面光洁度差、高分贝噪音和刀具过早失效。本文通过考虑主轴转速、切削深度、进给速度等参数,同时考虑刀具和工件的动力学特性,采用主动法进行颤振预测。振动信号是在封闭环境中使用加速度计获取的。对采集到的信号进行离散小波变换(DWT),利用支持向量机(SVM)提取特征,并将其分类为三种不同的模式(稳定、过渡和颤振)。分类结果使用表面粗糙度值(Ra)进行验证。[收到2016年8月12日;接受2017年5月19日]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信