Enabling Finer Grained Place Embeddings using Spatial Hierarchy from Human Mobility Trajectories

Toru Shimizu, T. Yabe, K. Tsubouchi
{"title":"Enabling Finer Grained Place Embeddings using Spatial Hierarchy from Human Mobility Trajectories","authors":"Toru Shimizu, T. Yabe, K. Tsubouchi","doi":"10.1145/3397536.3422229","DOIUrl":null,"url":null,"abstract":"Place embeddings generated from human mobility trajectories have become a popular method to understand the functionality of places, and could be applied as essential resources to various downstream tasks including land use classification and human mobility prediction. Place embeddings with high spatial resolution are desirable for many applications, however, downscaling the spatial resolution could degrade the quality of embeddings due to data sparsity, especially in less populated areas. Our proposed method addresses this issue by leveraging the hierarchical nature of spatial information, according to the local density of observed data points. We evaluated the effectiveness of our fine grained place embeddings via next place prediction tasks using real world trajectory data from 3 cities in Japan, and compared it with non-hierarchical baseline methods. Our technique of incorporating spatial hierarchical structure can complement and reinforce various other geospatial models using place embedding generation methods.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Place embeddings generated from human mobility trajectories have become a popular method to understand the functionality of places, and could be applied as essential resources to various downstream tasks including land use classification and human mobility prediction. Place embeddings with high spatial resolution are desirable for many applications, however, downscaling the spatial resolution could degrade the quality of embeddings due to data sparsity, especially in less populated areas. Our proposed method addresses this issue by leveraging the hierarchical nature of spatial information, according to the local density of observed data points. We evaluated the effectiveness of our fine grained place embeddings via next place prediction tasks using real world trajectory data from 3 cities in Japan, and compared it with non-hierarchical baseline methods. Our technique of incorporating spatial hierarchical structure can complement and reinforce various other geospatial models using place embedding generation methods.
利用人类移动轨迹的空间层次实现更细粒度的位置嵌入
由人类活动轨迹生成的地点嵌入已成为了解地点功能的一种流行方法,并可作为各种下游任务的重要资源,包括土地利用分类和人类活动预测。对于许多应用来说,高空间分辨率的位置嵌入是理想的,然而,由于数据稀疏性,降低空间分辨率可能会降低嵌入的质量,特别是在人口较少的地区。我们提出的方法根据观测数据点的局部密度,利用空间信息的层次性来解决这个问题。我们使用来自日本3个城市的真实轨迹数据,通过下一个地点预测任务评估了我们的细粒度地点嵌入的有效性,并将其与非分层基线方法进行了比较。结合空间层次结构的技术可以补充和加强其他地理空间模型的位置嵌入生成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信