Combining Data Augmentation and Domain Distance Minimisation to Reduce Domain Generalisation Error

Hoang Son Le, Rini Akmeliawati, G. Carneiro
{"title":"Combining Data Augmentation and Domain Distance Minimisation to Reduce Domain Generalisation Error","authors":"Hoang Son Le, Rini Akmeliawati, G. Carneiro","doi":"10.1109/DICTA52665.2021.9647203","DOIUrl":null,"url":null,"abstract":"Domain generalisation represents the challenging problem of using multiple training domains to learn a model that can generalise to previously unseen target domains. Recent papers have proposed using data augmentation to produce realistic adversarial examples to simulate domain shift. Under current domain adaptation/generalisation theory, it is unclear whether training with data augmentation alone is sufficient to improve domain generalisation results. We propose an extension of the current domain generalisation theoretical framework and a new method that combines data augmentation and domain distance minimisation to reduce the upper bound on domain generalisation error. Empirically, our algorithm produces competitive results when compared with the state-of-the-art methods in the domain generalisation benchmark PACS. We have also performed an ablation study of the technique on a real-world chest x-ray dataset, consisting of a subset of CheXpert, Chest14, and PadChest datasets. The result shows that the proposed method works best when the augmented domains are realistic, but it can perform robustly even when domain augmentation fails to produce realistic samples.","PeriodicalId":424950,"journal":{"name":"2021 Digital Image Computing: Techniques and Applications (DICTA)","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA52665.2021.9647203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Domain generalisation represents the challenging problem of using multiple training domains to learn a model that can generalise to previously unseen target domains. Recent papers have proposed using data augmentation to produce realistic adversarial examples to simulate domain shift. Under current domain adaptation/generalisation theory, it is unclear whether training with data augmentation alone is sufficient to improve domain generalisation results. We propose an extension of the current domain generalisation theoretical framework and a new method that combines data augmentation and domain distance minimisation to reduce the upper bound on domain generalisation error. Empirically, our algorithm produces competitive results when compared with the state-of-the-art methods in the domain generalisation benchmark PACS. We have also performed an ablation study of the technique on a real-world chest x-ray dataset, consisting of a subset of CheXpert, Chest14, and PadChest datasets. The result shows that the proposed method works best when the augmented domains are realistic, but it can perform robustly even when domain augmentation fails to produce realistic samples.
结合数据增强和域距离最小化减小域泛化误差
领域泛化是一个具有挑战性的问题,即使用多个训练领域来学习一个模型,该模型可以泛化到以前未见过的目标领域。最近的论文提出使用数据增强来产生现实的对抗性示例来模拟域移位。在目前的领域自适应/泛化理论下,仅使用数据增强训练是否足以改善领域泛化结果尚不清楚。我们对现有的领域泛化理论框架进行了扩展,提出了一种结合数据增强和领域距离最小化的新方法来减小领域泛化误差的上界。从经验上看,与领域泛化基准PACS中最先进的方法相比,我们的算法产生了具有竞争力的结果。我们还在真实的胸部x线数据集上对该技术进行了消融研究,该数据集包括CheXpert、Chest14和PadChest数据集的一个子集。结果表明,该方法在增强域真实的情况下效果最好,即使在增强域不能产生真实样本的情况下也能保持鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信