Non-uniform unit parsing for SSS-LR continuous speech recognition

H. Singer, J. Takami, S. Matsunaga
{"title":"Non-uniform unit parsing for SSS-LR continuous speech recognition","authors":"H. Singer, J. Takami, S. Matsunaga","doi":"10.1109/ICASSP.1994.389697","DOIUrl":null,"url":null,"abstract":"We describe recent improvements in ATR's experimental speech recognition system ATREUS, which serves as a recognition font end for the speech translation system ASURA. Our next goal is spontaneous speech translation. To constrain the potentially huge search space, better prosodic control, better probabilistic language models and better acoustic models are proposed. The SSS-LR parser was modified to work with non-uniform unit type acoustic and duration models. Experimental results showed, that, for example, use of mora trigram probabilities improved the phrase error rate from 17% to 14%.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We describe recent improvements in ATR's experimental speech recognition system ATREUS, which serves as a recognition font end for the speech translation system ASURA. Our next goal is spontaneous speech translation. To constrain the potentially huge search space, better prosodic control, better probabilistic language models and better acoustic models are proposed. The SSS-LR parser was modified to work with non-uniform unit type acoustic and duration models. Experimental results showed, that, for example, use of mora trigram probabilities improved the phrase error rate from 17% to 14%.<>
ss - lr连续语音识别的非统一单元解析
我们描述了ATR的实验性语音识别系统ATREUS的最新改进,该系统作为语音翻译系统ASURA的识别字体端。我们的下一个目标是自发语音翻译。为了限制潜在的巨大搜索空间,提出了更好的韵律控制、更好的概率语言模型和更好的声学模型。对ssss - lr解析器进行了修改,使其能够处理非均匀单元型声学和持续时间模型。实验结果表明,例如,使用mora三组概率将短语错误率从17%提高到14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信