Data Extraction from Similarly Structured Scanned Documents

Rustem Damirovich Saitgareev, B. R. Giniatullin, Vladislav Yurievich Toporov, Artur Aleksandrovich Atnagulov, Farid Radikovich Aglyamov
{"title":"Data Extraction from Similarly Structured Scanned Documents","authors":"Rustem Damirovich Saitgareev, B. R. Giniatullin, Vladislav Yurievich Toporov, Artur Aleksandrovich Atnagulov, Farid Radikovich Aglyamov","doi":"10.26907/1562-5419-2021-24-4-667-688","DOIUrl":null,"url":null,"abstract":"Currently, the major part of transmitted and stored data is unstructured, and the amount of unstructured data is growing rapidly each year, although it is hardly searchable, unqueryable, and its processing is not automated. At the same time, there is a growth of electronic document management systems. This paper proposes a solution for extracting data from paper documents considering their structure and layout based on document photos. By examining different approaches, including neural networks and plain algorithmic methods, we present their results and discuss them.","PeriodicalId":262909,"journal":{"name":"Russian Digital Libraries Journal","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Digital Libraries Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/1562-5419-2021-24-4-667-688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the major part of transmitted and stored data is unstructured, and the amount of unstructured data is growing rapidly each year, although it is hardly searchable, unqueryable, and its processing is not automated. At the same time, there is a growth of electronic document management systems. This paper proposes a solution for extracting data from paper documents considering their structure and layout based on document photos. By examining different approaches, including neural networks and plain algorithmic methods, we present their results and discuss them.
从结构相似的扫描文档中提取数据
目前,传输和存储的大部分数据是非结构化的,非结构化数据的数量每年都在快速增长,尽管它很难被搜索、查询,而且它的处理也不是自动化的。与此同时,电子文档管理系统也在不断发展。本文提出了一种基于文档照片的基于文档结构和布局的纸质文档数据提取方法。通过研究不同的方法,包括神经网络和普通算法方法,我们提出了他们的结果并讨论了他们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信