VINS-Mask: A ROI-mask Feature Tracker for Monocular Visual-inertial System

Jiayu Sun, Fangwei Song, Luping Ji
{"title":"VINS-Mask: A ROI-mask Feature Tracker for Monocular Visual-inertial System","authors":"Jiayu Sun, Fangwei Song, Luping Ji","doi":"10.1109/ICARCE55724.2022.10046501","DOIUrl":null,"url":null,"abstract":"Feature tracker is usually believed to be one of the most important components to the performance influence on a Visual-inertial System (VINS). This paper proposes the VINS-Mask scheme, a more robust feature tracker for monocular VINS through Region of Interest (ROI) masks. It could achieve real-time feature tracking with high accuracy and robustness. Firstly, we propose an edge mask to generate the edge-sensitive feature candidate regions from the incoming image frame. Next, we design an interest point sensitive SuperPoint mask with deep learning framework to obtain repeatable and reliable feature candidate regions. We also dynamically adjust the inflation radius by monitoring the initial status from VINS Initialization module to obtain more accurate ROI masks. Notably, compared with the best baseline approach (i.e., VINS-Mono), our VINS-Mask scheme achieves an average improvement accuracy of 0.068m on the dataset of EuRoc drone. After paper publication, our source codes will be available at https://github.com/sunjia-yuanro/VINS-Mask.git.","PeriodicalId":416305,"journal":{"name":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCE55724.2022.10046501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature tracker is usually believed to be one of the most important components to the performance influence on a Visual-inertial System (VINS). This paper proposes the VINS-Mask scheme, a more robust feature tracker for monocular VINS through Region of Interest (ROI) masks. It could achieve real-time feature tracking with high accuracy and robustness. Firstly, we propose an edge mask to generate the edge-sensitive feature candidate regions from the incoming image frame. Next, we design an interest point sensitive SuperPoint mask with deep learning framework to obtain repeatable and reliable feature candidate regions. We also dynamically adjust the inflation radius by monitoring the initial status from VINS Initialization module to obtain more accurate ROI masks. Notably, compared with the best baseline approach (i.e., VINS-Mono), our VINS-Mask scheme achieves an average improvement accuracy of 0.068m on the dataset of EuRoc drone. After paper publication, our source codes will be available at https://github.com/sunjia-yuanro/VINS-Mask.git.
vin -mask:一种用于单目视觉惯性系统的ROI-mask特征跟踪器
特征跟踪器通常被认为是影响视觉惯性系统性能的重要部件之一。本文提出了一种基于感兴趣区域(ROI)掩模的单眼VINS特征跟踪算法——VINS- mask方案。该方法可以实现实时特征跟踪,具有较高的准确性和鲁棒性。首先,我们提出了一种边缘掩模,从输入的图像帧中生成边缘敏感特征候选区域。其次,利用深度学习框架设计兴趣点敏感SuperPoint掩模,获得可重复、可靠的特征候选区域。通过VINS Initialization模块对初始状态的监测,动态调整膨胀半径,获得更精确的ROI掩模。值得注意的是,与最佳基线方法(即VINS-Mono)相比,我们的VINS-Mask方案在EuRoc无人机数据集上的平均精度提高了0.068m。论文发表后,我们的源代码将在https://github.com/sunjia-yuanro/VINS-Mask.git上提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信