Automatic Hierarchical Parallelization of Linear Recurrences

Sepideh Maleki, Martin Burtscher
{"title":"Automatic Hierarchical Parallelization of Linear Recurrences","authors":"Sepideh Maleki, Martin Burtscher","doi":"10.1145/3173162.3173168","DOIUrl":null,"url":null,"abstract":"Linear recurrences encompass many fundamental computations including prefix sums and digital filters. Later result values depend on earlier result values in recurrences, making it a challenge to compute them in parallel. We present a new work- and space-efficient algorithm to compute linear recurrences that is amenable to automatic parallelization and suitable for hierarchical massively-parallel architectures such as GPUs. We implemented our approach in a domain-specific code generator that emits optimized CUDA code. Our evaluation shows that, for standard prefix sums and single-stage IIR filters, the generated code reaches the throughput of memory copy for large inputs, which cannot be surpassed. On higher-order prefix sums, it performs nearly as well as the fastest handwritten code from the literature. On tuple-based prefix sums and digital filters, our automatically parallelized code outperforms the fastest prior implementations.","PeriodicalId":302876,"journal":{"name":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"23 2-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173162.3173168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Linear recurrences encompass many fundamental computations including prefix sums and digital filters. Later result values depend on earlier result values in recurrences, making it a challenge to compute them in parallel. We present a new work- and space-efficient algorithm to compute linear recurrences that is amenable to automatic parallelization and suitable for hierarchical massively-parallel architectures such as GPUs. We implemented our approach in a domain-specific code generator that emits optimized CUDA code. Our evaluation shows that, for standard prefix sums and single-stage IIR filters, the generated code reaches the throughput of memory copy for large inputs, which cannot be surpassed. On higher-order prefix sums, it performs nearly as well as the fastest handwritten code from the literature. On tuple-based prefix sums and digital filters, our automatically parallelized code outperforms the fastest prior implementations.
线性递归的自动分层并行化
线性递归包含许多基本的计算,包括前缀和和数字滤波器。后期的结果值依赖于递归中早期的结果值,这使得并行计算它们成为一项挑战。我们提出了一种新的工作效率和空间效率高的算法来计算线性递归,该算法适用于自动并行化,并适用于gpu等分层大规模并行架构。我们在一个特定领域的代码生成器中实现了我们的方法,该生成器会发出优化的CUDA代码。我们的评估表明,对于标准前缀和和单阶段IIR过滤器,生成的代码达到了大输入的内存复制吞吐量,这是无法超越的。在高阶前缀和上,它的性能几乎和文献中最快的手写代码一样好。在基于元组的前缀和和数字过滤器上,我们的自动并行代码比之前最快的实现性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信