Analysis of Economic Indicators Through News and Twitter Using Text Mining, Machine Learning and Multiagent Systems

Cristhian Johnathan Izquierdo Ortiz
{"title":"Analysis of Economic Indicators Through News and Twitter Using Text Mining, Machine Learning and Multiagent Systems","authors":"Cristhian Johnathan Izquierdo Ortiz","doi":"10.1109/ColCACI59285.2023.10225755","DOIUrl":null,"url":null,"abstract":"This research proposes a new analysis approach for economic phenomena, including data from news and social networks as external information to predict commodity values (LBMA GOLD and Brent oil) and the USD/COP currency, clas-sify the sources of information and model multi-agent systems. Information was collected from 166 news sources through RSS and Twitter for 8 months (from October 2020 to May 2021). Linear regressions and assembly machine learning techniques such as XGBoost and Random Forest are used to predict daily changes. The analysis is complemented with the construction of a socio-inspired multi-agent system that evolves using external information, at the end presents patterns typical of complex systems.","PeriodicalId":206196,"journal":{"name":"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ColCACI59285.2023.10225755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research proposes a new analysis approach for economic phenomena, including data from news and social networks as external information to predict commodity values (LBMA GOLD and Brent oil) and the USD/COP currency, clas-sify the sources of information and model multi-agent systems. Information was collected from 166 news sources through RSS and Twitter for 8 months (from October 2020 to May 2021). Linear regressions and assembly machine learning techniques such as XGBoost and Random Forest are used to predict daily changes. The analysis is complemented with the construction of a socio-inspired multi-agent system that evolves using external information, at the end presents patterns typical of complex systems.
利用文本挖掘、机器学习和多智能体系统分析新闻和推特的经济指标
本研究提出了一种新的经济现象分析方法,包括来自新闻和社交网络的数据作为预测商品价值(LBMA GOLD和Brent oil)和美元/COP货币的外部信息,对信息来源进行分类并建立多智能体系统模型。通过RSS和Twitter从166个新闻来源收集信息,为期8个月(2020年10月至2021年5月)。线性回归和装配机器学习技术(如XGBoost和Random Forest)用于预测日常变化。该分析与社会启发的多主体系统的构建相辅相成,该系统使用外部信息进化,最后呈现出复杂系统的典型模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信