R. R. Maaliw, Julie Ann B. Susa, A. Alon, A. Lagman, Shaneth C. Ambat, M. B. García, K. Piad, M. C. F. Raguro
{"title":"A Deep Learning Approach for Automatic Scoliosis Cobb Angle Identification","authors":"R. R. Maaliw, Julie Ann B. Susa, A. Alon, A. Lagman, Shaneth C. Ambat, M. B. García, K. Piad, M. C. F. Raguro","doi":"10.1109/aiiot54504.2022.9817290","DOIUrl":null,"url":null,"abstract":"Efficient and reliable medical image analysis is indispensable in modern healthcare settings. The conventional approaches in diagnostics and evaluations from a mere picture are complex. It often leads to subjectivity due to experts' various experiences and expertise. Using convolutional neural networks, we proposed an end-to-end pipeline for automatic Cobb angle measurement to pinpoint scoliosis severity. Our results show that the Residual U-Net architecture provides vertebrae average segmentation accuracy of 92.95% based on Dice and Jaccard similarity coefficients. Furthermore, a comparative benchmark between physician's measurement and our machine-driven approach produces an acceptable mean deviation of 1.57 degrees and a T-test p-value of 0.9028, indicating no significant difference. This study has the potential to help doctors in prompt scoliosis magnitude assessments.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Efficient and reliable medical image analysis is indispensable in modern healthcare settings. The conventional approaches in diagnostics and evaluations from a mere picture are complex. It often leads to subjectivity due to experts' various experiences and expertise. Using convolutional neural networks, we proposed an end-to-end pipeline for automatic Cobb angle measurement to pinpoint scoliosis severity. Our results show that the Residual U-Net architecture provides vertebrae average segmentation accuracy of 92.95% based on Dice and Jaccard similarity coefficients. Furthermore, a comparative benchmark between physician's measurement and our machine-driven approach produces an acceptable mean deviation of 1.57 degrees and a T-test p-value of 0.9028, indicating no significant difference. This study has the potential to help doctors in prompt scoliosis magnitude assessments.