A Deep Learning Approach for Automatic Scoliosis Cobb Angle Identification

R. R. Maaliw, Julie Ann B. Susa, A. Alon, A. Lagman, Shaneth C. Ambat, M. B. García, K. Piad, M. C. F. Raguro
{"title":"A Deep Learning Approach for Automatic Scoliosis Cobb Angle Identification","authors":"R. R. Maaliw, Julie Ann B. Susa, A. Alon, A. Lagman, Shaneth C. Ambat, M. B. García, K. Piad, M. C. F. Raguro","doi":"10.1109/aiiot54504.2022.9817290","DOIUrl":null,"url":null,"abstract":"Efficient and reliable medical image analysis is indispensable in modern healthcare settings. The conventional approaches in diagnostics and evaluations from a mere picture are complex. It often leads to subjectivity due to experts' various experiences and expertise. Using convolutional neural networks, we proposed an end-to-end pipeline for automatic Cobb angle measurement to pinpoint scoliosis severity. Our results show that the Residual U-Net architecture provides vertebrae average segmentation accuracy of 92.95% based on Dice and Jaccard similarity coefficients. Furthermore, a comparative benchmark between physician's measurement and our machine-driven approach produces an acceptable mean deviation of 1.57 degrees and a T-test p-value of 0.9028, indicating no significant difference. This study has the potential to help doctors in prompt scoliosis magnitude assessments.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Efficient and reliable medical image analysis is indispensable in modern healthcare settings. The conventional approaches in diagnostics and evaluations from a mere picture are complex. It often leads to subjectivity due to experts' various experiences and expertise. Using convolutional neural networks, we proposed an end-to-end pipeline for automatic Cobb angle measurement to pinpoint scoliosis severity. Our results show that the Residual U-Net architecture provides vertebrae average segmentation accuracy of 92.95% based on Dice and Jaccard similarity coefficients. Furthermore, a comparative benchmark between physician's measurement and our machine-driven approach produces an acceptable mean deviation of 1.57 degrees and a T-test p-value of 0.9028, indicating no significant difference. This study has the potential to help doctors in prompt scoliosis magnitude assessments.
脊柱侧凸Cobb角自动识别的深度学习方法
高效、可靠的医学图像分析在现代医疗环境中不可或缺。仅凭图像进行诊断和评价的传统方法是复杂的。由于专家的经验和专业知识各不相同,往往会导致主观性。利用卷积神经网络,我们提出了一个端到端自动测量Cobb角的管道,以确定脊柱侧凸的严重程度。结果表明,基于Dice和Jaccard相似系数的残差U-Net结构能提供92.95%的椎骨平均分割精度。此外,医生测量和我们的机器驱动方法之间的比较基准产生了1.57度的可接受的平均偏差和0.9028的t检验p值,表明没有显著差异。这项研究有可能帮助医生及时评估脊柱侧凸的严重程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信