Sampling short lattice vectors and the closest lattice vector problem

M. Ajtai, Ravi Kumar, D. Sivakumar
{"title":"Sampling short lattice vectors and the closest lattice vector problem","authors":"M. Ajtai, Ravi Kumar, D. Sivakumar","doi":"10.1109/CCC.2002.1004339","DOIUrl":null,"url":null,"abstract":"We present a 2/sup O(n)/ time Turing reduction from the closest lattice vector problem to the shortest lattice vector problem. Our reduction assumes access to a subroutine that solves SVP exactly and a subroutine to sample short vectors from a lattice, and computes a (1+/spl epsi/)-approximation to CVP As a consequence, using the SVP algorithm from (Ajtai et al., 2001), we obtain a randomized 2[O(1+/spl epsi//sup -1/)n] algorithm to obtain a (1+/spl epsi/)-approximation for the closest lattice vector problem in n dimensions. This improves the existing time bound of O(n!) for CVP achieved by a deterministic algorithm in (Blomer, 2000).","PeriodicalId":193513,"journal":{"name":"Proceedings 17th IEEE Annual Conference on Computational Complexity","volume":"322 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th IEEE Annual Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2002.1004339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

Abstract

We present a 2/sup O(n)/ time Turing reduction from the closest lattice vector problem to the shortest lattice vector problem. Our reduction assumes access to a subroutine that solves SVP exactly and a subroutine to sample short vectors from a lattice, and computes a (1+/spl epsi/)-approximation to CVP As a consequence, using the SVP algorithm from (Ajtai et al., 2001), we obtain a randomized 2[O(1+/spl epsi//sup -1/)n] algorithm to obtain a (1+/spl epsi/)-approximation for the closest lattice vector problem in n dimensions. This improves the existing time bound of O(n!) for CVP achieved by a deterministic algorithm in (Blomer, 2000).
采样短晶格向量和最接近晶格向量问题
我们给出了从最近格向量问题到最短格向量问题的2/sup O(n)/ time图灵约简。我们的约简假设可以访问精确解决SVP的子程序和从晶格中采样短向量的子程序,并计算CVP的(1+/spl epsi/)-近似值。因此,使用(Ajtai等人,2001)中的SVP算法,我们得到了一个随机的2[O(1+/spl epsi//sup -1/)n]算法来获得n维中最接近的晶格向量问题的(1+/spl epsi/)-近似值。这改进了(Blomer, 2000)中由确定性算法实现的CVP的现有O(n!)时间界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信