Diffusion treatment of quantum mechanics and its consequences

Zahid Zakir
{"title":"Diffusion treatment of quantum mechanics and its consequences","authors":"Zahid Zakir","doi":"10.9751/qgph.2-013.7610","DOIUrl":null,"url":null,"abstract":"Localized ensemble of free microparticles spreads out as in a frictionless diffusion satisfying the principle of relativity. An ensemble of classical particles in a fluctuating classical scalar field diffuses in a similar way, and this analogy is used to formulate diffusion quantum mechanics (DQM). DQM reproduces quantum mechanics for homogeneous and gravity for inhomogeneous scalar field. Diffusion flux and probability density are related by Fick’s law, diffusion coefficient is constant and invariant. Hamiltonian includes a “thermal” energy, kinetic energies of drift and diffusion flux. The probability density and the action function of drift form a canonical pair and canonical equations for them lead to the Hamilton-Jacobi-Madelung and continuity equations. At canonical transformation to a complex probability amplitude they form a linear Schrödinger equation. DQM explains appearance of quantum statistics, rest energy (“thermal” energy) and gravity (“thermal” diffusion) and leads to a low mass mechanism for composite particles.","PeriodicalId":294020,"journal":{"name":"QUANTUM AND GRAVITATIONAL PHYSICS","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"QUANTUM AND GRAVITATIONAL PHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9751/qgph.2-013.7610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Localized ensemble of free microparticles spreads out as in a frictionless diffusion satisfying the principle of relativity. An ensemble of classical particles in a fluctuating classical scalar field diffuses in a similar way, and this analogy is used to formulate diffusion quantum mechanics (DQM). DQM reproduces quantum mechanics for homogeneous and gravity for inhomogeneous scalar field. Diffusion flux and probability density are related by Fick’s law, diffusion coefficient is constant and invariant. Hamiltonian includes a “thermal” energy, kinetic energies of drift and diffusion flux. The probability density and the action function of drift form a canonical pair and canonical equations for them lead to the Hamilton-Jacobi-Madelung and continuity equations. At canonical transformation to a complex probability amplitude they form a linear Schrödinger equation. DQM explains appearance of quantum statistics, rest energy (“thermal” energy) and gravity (“thermal” diffusion) and leads to a low mass mechanism for composite particles.
量子力学的扩散处理及其后果
自由微粒的局域系综像满足相对性原理的无摩擦扩散一样展开。在波动的经典标量场中,经典粒子的系综也以类似的方式扩散,这种类比被用来表述扩散量子力学(DQM)。DQM再现了齐次标量场的量子力学和非齐次标量场的引力。扩散通量与概率密度遵循菲克定律,扩散系数是常数和不变的。哈密顿量包括“热”能、漂移动能和扩散通量。漂移的概率密度和作用函数形成一个正则对,它们的正则方程导致Hamilton-Jacobi-Madelung方程和连续性方程。在正则变换到复概率振幅时,它们形成一个线性Schrödinger方程。DQM解释了量子统计、静止能(“热”能)和引力(“热”扩散)的出现,并导致了复合粒子的低质量机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信