J. Sitek, M. Kościelski, Piotr Dawidowicz, Piotr Ciszewski, Mariia Khramova, Duc Nguyen Quang, Sergio Martinez
{"title":"Investigations of temperature resistance of memory BGA components during multi-reflow processes for Circular Economy applications","authors":"J. Sitek, M. Kościelski, Piotr Dawidowicz, Piotr Ciszewski, Mariia Khramova, Duc Nguyen Quang, Sergio Martinez","doi":"10.23919/EMPC.2017.8346853","DOIUrl":null,"url":null,"abstract":"This article presents the results of research aimed to evaluate temperature resistance of memory BGA components during different multi-reflow processes which are needed for desoldering and remanufacturing processes of BGA components in Circular Economy applications. Special test PCBA has been designed to verify temperature resistance of active components such as memories and controllers. From 1 to 12 cycles of thermal exposures (reflow processes) have been applied to conduct thorough assessment of BGA components. The functionality of components after each thermal process has been checked right away. Additional verification after desoldering and remanufacturing of components has been performed by “sustainablySMART” project partner — Blancco Technology Group (herein after referred as to “Blancco”). The memory test results show that active components are much more temperature resistant than what is stated in the datasheets provided by the manufacturer. The most frequently observed defects were related to the damage of PCB's pads not to the structure of active components.","PeriodicalId":329807,"journal":{"name":"2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EMPC.2017.8346853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This article presents the results of research aimed to evaluate temperature resistance of memory BGA components during different multi-reflow processes which are needed for desoldering and remanufacturing processes of BGA components in Circular Economy applications. Special test PCBA has been designed to verify temperature resistance of active components such as memories and controllers. From 1 to 12 cycles of thermal exposures (reflow processes) have been applied to conduct thorough assessment of BGA components. The functionality of components after each thermal process has been checked right away. Additional verification after desoldering and remanufacturing of components has been performed by “sustainablySMART” project partner — Blancco Technology Group (herein after referred as to “Blancco”). The memory test results show that active components are much more temperature resistant than what is stated in the datasheets provided by the manufacturer. The most frequently observed defects were related to the damage of PCB's pads not to the structure of active components.