A non-negative sparse promoting algorithm for high resolution hyperspectral imaging

Eliot Wycoff, Tsung-Han Chan, K. Jia, Wing-Kin Ma, Yi Ma
{"title":"A non-negative sparse promoting algorithm for high resolution hyperspectral imaging","authors":"Eliot Wycoff, Tsung-Han Chan, K. Jia, Wing-Kin Ma, Yi Ma","doi":"10.1109/ICASSP.2013.6637883","DOIUrl":null,"url":null,"abstract":"Promoting the spatial resolution of off-the-shelf hyperspectral sensors is expected to improve typical computer vision tasks, such as target tracking and image classification. In this paper, we investigate the scenario in which two cameras, one with a conventional RGB sensor and the other with a hyperspectral sensor, capture the same scene, attempting to extract redundant and complementary information. We propose a non-negative sparse promoting framework to integrate the hyperspectral and RGB data into a high resolution hyperspectral set of data. The formulated problem is in the form of a sparse non-negative matrix factorization with prior knowledge on the spectral and spatial transform responses, and it can be handled by alternating optimization where each subproblem is solved by efficient convex optimization solvers; e.g., the alternating direction method of multipliers. Experiments on a public database show that our method achieves much lower average reconstruction errors than other state-of-the-art methods.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6637883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 130

Abstract

Promoting the spatial resolution of off-the-shelf hyperspectral sensors is expected to improve typical computer vision tasks, such as target tracking and image classification. In this paper, we investigate the scenario in which two cameras, one with a conventional RGB sensor and the other with a hyperspectral sensor, capture the same scene, attempting to extract redundant and complementary information. We propose a non-negative sparse promoting framework to integrate the hyperspectral and RGB data into a high resolution hyperspectral set of data. The formulated problem is in the form of a sparse non-negative matrix factorization with prior knowledge on the spectral and spatial transform responses, and it can be handled by alternating optimization where each subproblem is solved by efficient convex optimization solvers; e.g., the alternating direction method of multipliers. Experiments on a public database show that our method achieves much lower average reconstruction errors than other state-of-the-art methods.
高分辨率高光谱成像的非负稀疏提升算法
提高现有高光谱传感器的空间分辨率有望改善典型的计算机视觉任务,如目标跟踪和图像分类。在本文中,我们研究了两个相机,一个使用传统的RGB传感器,另一个使用高光谱传感器,捕捉相同的场景,试图提取冗余和互补信息的场景。我们提出了一个非负稀疏促进框架,将高光谱和RGB数据整合成一个高分辨率的高光谱数据集。该公式的问题是一个具有频谱和空间变换响应先验知识的稀疏非负矩阵分解形式,它可以通过交替优化来处理,其中每个子问题都由高效的凸优化求解器求解;例如,乘法器的交替方向法。在公共数据库上的实验表明,该方法的平均重构误差比其他最先进的方法要低得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信