Recursive utility optimization with concave coefficients

Shaolin Ji, Xiaomin Shi
{"title":"Recursive utility optimization with concave coefficients","authors":"Shaolin Ji, Xiaomin Shi","doi":"10.3934/MCRF.2018033","DOIUrl":null,"url":null,"abstract":"This paper concerns the recursive utility maximization problem. We assume that the coefficients of the wealth equation and the recursive utility are concave. Then some interesting and important cases with nonlinear and nonsmooth coefficients satisfy our assumption. After given an equivalent backward formulation of our problem, we employ the Fenchel-Legendre transform and derive the corresponding variational formulation. By the convex duality method, the primal \"sup-inf\" problem is translated to a dual minimization problem and the saddle point of our problem is derived. Finally, we obtain the optimal terminal wealth. To illustrate our results, three cases for investors with ambiguity aversion are explicitly worked out under some special assumptions.","PeriodicalId":385109,"journal":{"name":"arXiv: Mathematical Finance","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/MCRF.2018033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper concerns the recursive utility maximization problem. We assume that the coefficients of the wealth equation and the recursive utility are concave. Then some interesting and important cases with nonlinear and nonsmooth coefficients satisfy our assumption. After given an equivalent backward formulation of our problem, we employ the Fenchel-Legendre transform and derive the corresponding variational formulation. By the convex duality method, the primal "sup-inf" problem is translated to a dual minimization problem and the saddle point of our problem is derived. Finally, we obtain the optimal terminal wealth. To illustrate our results, three cases for investors with ambiguity aversion are explicitly worked out under some special assumptions.
凹系数递归效用优化
本文研究递归效用最大化问题。我们假设财富方程和递归效用的系数是凹的。然后,一些具有非线性和非光滑系数的有趣且重要的情况满足了我们的假设。在给出问题的等价反推公式后,我们利用fenchell - legendre变换,推导出相应的变分公式。利用凸对偶方法,将原“上-无穷”问题转化为对偶极小化问题,导出了问题的鞍点。最后,得到了最优的终端财富。为了说明我们的结果,在一些特殊的假设下,明确地制定了三种模棱两可厌恶投资者的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信