M. Babenko, N. Kucherov, A. Tchernykh, V. Kuchukov, E. Golimblevskaia, E. Kuchukova, I. Vashchenko
{"title":"Determining the rank of a number in the residue number system","authors":"M. Babenko, N. Kucherov, A. Tchernykh, V. Kuchukov, E. Golimblevskaia, E. Kuchukova, I. Vashchenko","doi":"10.47350/iccs-de.2021.01","DOIUrl":null,"url":null,"abstract":"In this article, the formulation and proof of the theorem on the difference in the ranks of the numbers represented in the Residue Number System is carried out. A method is proposed that allows to reduce the amount of necessary calculations and increases the speed of calculating the rank of a number relative to the method for calculating the rank of a number based on the approximate method. To find the rank of a number in the method for calculating the rank of a number based on the approximate method, it is necessary to calculate n operations with numbers exceeding the modulus value; in the proposed method, it is necessary to calculate n·(n−1)/2 operations not exceeding the value of the module.","PeriodicalId":210887,"journal":{"name":"International Workshop on Information, Computation, and Control Systems for Distributed Environments","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Information, Computation, and Control Systems for Distributed Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47350/iccs-de.2021.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the formulation and proof of the theorem on the difference in the ranks of the numbers represented in the Residue Number System is carried out. A method is proposed that allows to reduce the amount of necessary calculations and increases the speed of calculating the rank of a number relative to the method for calculating the rank of a number based on the approximate method. To find the rank of a number in the method for calculating the rank of a number based on the approximate method, it is necessary to calculate n operations with numbers exceeding the modulus value; in the proposed method, it is necessary to calculate n·(n−1)/2 operations not exceeding the value of the module.